Aurora experiment: Final results of studies of ${ }^{116} \mathrm{Cd} 2 \beta$ decay with enriched ${ }^{116} \mathrm{CdWO}_{4}$ crystal scintillators

A.S. Barabash ${ }^{1}$, P. Belli ${ }^{2,3}$, R. Bernabei ${ }^{2,3}$, F. Cappella ${ }^{4}$, V. Caracciolo ${ }^{5}$, R. Cerulli ${ }^{2,3}$, D.M. Chernyak ${ }^{6,7}$, F.A. Danevich ${ }^{6}$, S. d'Angelo ${ }^{2,3}$, A. Incicchitti4,8, ${ }^{\text {, }}$ D.V. Kasperovych ${ }^{6}$, V.V. Kobychev ${ }^{6}$, S.I. Konovalov ${ }^{1}$, M. Laubenstein ${ }^{5}$, D.V. Poda ${ }^{6,9}$, O.G. Polischuk ${ }^{6}$, V.N. Shlegel ${ }^{10}$, V.I. Tretyak ${ }^{6}$, V.I. Umatov ${ }^{1}$, Ya.V. Vasiliev ${ }^{10}$
${ }^{1}$ NRC "Kurchatov Institute", ITEP, 117218 Moscow, Russia
2 INFN, sezione di Roma "Tor Vergata", I-00133 Rome, Italy
${ }^{3}$ Dip. di Fisica, Universita di Roma "Tor Vergata", I-00133 Rome, Italy ${ }^{4}$ INFN, sezione di Roma, I-00185 Rome, Italy
${ }^{5}$ INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy ${ }^{6}$ Institute for Nuclear Research, 03028 Kyiv, Ukraine
${ }^{7}$ Kavli Institute for the Phys. and Math. of the Universe, Kashiwa, 277-8583, Japan
${ }^{8}$ Dip. di Fisica, Universita di Roma "La Sapienza", I-00185 Rome, Italy ${ }^{9}$ CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Univ. Paris-Saclay, 91405 Orsay, France ${ }^{10}$ Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia

MEDEX‘19, Prague, Czech Republic, 27-31.05.2019

Introduction

${ }^{116} \mathrm{Cd}$ is one of the best isotopes to search for $2 \beta 0 \mathrm{v}$ decay:
(1) $Q_{2 \beta}=2813.49(13) \mathrm{keV}:$
(a) exp. point of view: $>2615 \mathrm{keV}$ of ${ }^{208} \mathrm{TI}$;
(b) th. point of view: $\Gamma(2 \beta 2 v) \sim \mathbf{Q}_{2 \beta}{ }^{11}, \Gamma(2 \beta 0 v) \sim \mathbf{Q}_{2 \beta}{ }^{5}$;
(2) favorable th. estimations of NMEs for $2 \beta 0 v$;
(3) quite high isotopic abundance $\delta=7.512(54) \%$ and availability of enrichment by centrifugation (cheap) in large amounts;
(4) possibility to use "source = detector" approach with CdWO_{4} / CdTe / ... which ensures high (close to 1) efficiency.

$1 / \mathrm{T}_{1 / 2}(2 \beta 0 v)=\eta^{2}\left|\mathrm{NME}^{0 v}\right|^{2} \mathbf{G}^{0 v}\left(\mathrm{Q}_{2 \beta}, \mathbf{Z}\right)$ $\eta=m_{v} / m_{e}$ for light v mass mechanism

$$
\begin{aligned}
& \text { J.D. Vergados et al., RPP } 75 \text { (2012) } 1063012 \\
& \left(m_{v}=50 \mathrm{meV}, g_{A}=1.25\right)
\end{aligned}
$$

Scheme of 2β decay ${ }^{116} \mathrm{Cd} \rightarrow{ }^{116} \mathrm{Sn}$

Energy spectra $\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right)$ for different 2β modes

The most stringent previous limits (90\% C.L.) for ${ }^{116} \mathrm{Cd} 2 \beta 0 \mathrm{v}$:

$\mathrm{T}_{1 / 2}>1.7 \times 10^{23} \mathrm{yr}$ (Solotvina, F.A. Danevich et al., PRC 68 (2003) 035501)
 $\mathrm{T}_{1 / 2}>1.0 \times 10^{23} \mathrm{yr}$ (NEMO-3, R. Arnold et al., PRD 95 (2017) 012007)

Positive observations of $2 \beta 2 v$:

TABLE I. Experiments where $2 \nu 2 \beta$ decay of ${ }^{116} \mathrm{Cd}$ was observed.

Experiment	$T_{1 / 2}\left(\times 10^{19} \mathrm{yr}\right)$	Year, Reference
ELEGANT V, ${ }^{116} \mathrm{Cd}$ foil, drift chambers, plastic scintillators	$2.6_{-0.5}^{+0.9}$	1995 [40]
Solotvina, ${ }^{116} \mathrm{CdWO}_{4}$ scintillators	$2.7{ }_{-0.4}^{+0.5}(\text { stat })_{-0.6}^{+0.9}$ (sys)	1995 [41]
NEMO-2, ${ }^{116} \mathrm{Cd}$ foils, track reconstruction by Geiger cells, plastic scintillators	3.75 ± 0.35 (stat) ± 0.21 (sys) ${ }^{\text {a }}$	1995 [43,44]
Solotvina, ${ }^{116} \mathrm{CdWO}_{4}$ scintillators	$2.6 \pm 0.1(\text { stat })_{-0.4}^{+0.7}$ (sys)	2000 [42]
Solotvina, ${ }^{116} \mathrm{CdWO}_{4}$ scintillators	2.9 ± 0.06 (stat $)_{-0.3}^{+0.4}$ (sys)	2003 [32]
NEMO-3, ${ }^{116} \mathrm{Cd}$ foils, track reconstruction by Geiger cells, plastic scintillators	2.74 ± 0.04 (stat) ± 0.18 (sys)	2017 [45]
${ }^{116} \mathrm{CdWO}_{4}$ scintillators	2.63 ± 0.01 (stat) ${ }_{-0.12}^{+0.11}$ (sys)	2018, Present work

[^0]

First observations (1995) of $2 \beta 2 v$ decay in ${ }^{116} \mathrm{Cd}$

ELEGANT V: H.Ejiri et al., J. Phys. Soc. Japan 64 (1995) 339: foil ${ }^{166} \mathrm{Cd}(90.7 \%), 33 \mu \mathrm{~m}, 91 \mathrm{~g}, 1875$ h, ~200 events

Solotvina: F.A. Danevich et al., PLB 344 (1995) 72: ${ }^{116} \mathrm{CdWO}_{4} 19 \mathrm{~cm}{ }^{3}$ (83\%), $2982 \mathrm{~h}, \sim 600$ events

NEMO-2: R. Arnold et al., JETP Lett. 61 (1995) 170:
foil ${ }^{116} \mathrm{Cd}$ (93.2%), $40 \mu \mathrm{~m}, 152 \mathrm{~g}, 2460$ h, 69 events
(Aurora experiment: 92,923 events observed)

Experiment

Two enriched CdWO_{4} scintillating crystals (580 and 582 g), 82\% of ${ }^{116} \mathrm{Cd}$, produced by low-thermal-gradient Czochralski crystal growth technique from highly purified Cd

Crystal boule 1868 g and scintillating elements (326, 582 and 586 g , JINST 06 (2011) P08011)

LNGS (3600 m w.e.), DAMA/R\&D low background set-up

Few upgrades. Final stage (since March 2014):
(1) ${ }^{116} \mathrm{CdWO}_{4}$ crystal scintillators
(2) teflon containers
(3) liquid scintillator
(4) quartz light guides ($\varnothing 7 \times 40 \mathrm{~cm}$)
(5) photomultipliers (3" Hamamatsu R6233MOD)
(6) high-purity copper (10 cm)
(7) low radioactive lead (15 cm)
(8) cadmium (1.5 mm)
(9) polyethylene/paraffin (4 to 10 cm) (10) plexiglas box (flushed by HP \mathbf{N}_{2})

DAQ:
amplitude arrival time pulse shape
($50 \mu \mathrm{~s}$ with 20 ns bin)
Calibration:
${ }^{22} \mathrm{Na},{ }^{60} \mathrm{Co},{ }^{133} \mathrm{Ba}$, ${ }^{137} \mathrm{Cs},{ }^{228}$ Th

FWHM $_{\gamma}=\left(10.2 \mathrm{E}_{\gamma}\right)^{7 / 2}$

Data analysis

1. Pulse-shape discrimination

For each signal $f(t)$, shape indicator (SI) is calculated:
$S I=\sum f\left(t_{k}\right) \times P\left(t_{k}\right) / \sum f\left(t_{k}\right)$
$P(t)=\left|f_{\alpha}(t)-f_{\gamma}(t)\right| /\left|f_{\alpha}(t)+f_{\gamma}(t)\right|$

${ }^{116} \mathrm{CdWO}_{4}$ detector \#2, 26831 h. Good discrimination ability.

${ }^{116} \mathrm{CdWO}_{4}$ detectors \#1+2, 26831 h. Raw data, $\gamma(\beta)$ and α components (in CWO-1 and CWO-2), 212Bi-Po 8 events

Spectrum of α events (26831 h , CWO-1 and CWO-2) and its individual components

TABLE II. Radioactive contamination of the ${ }^{116} \mathrm{CdWO}_{4}$ crystals. Reference date is February 2016.

Chain	Nuclide	Activity $(\mathrm{mBq} / \mathrm{kg})$
	${ }^{40} \mathrm{~K}$	$0.22(9)$
	${ }^{90} \mathrm{Sr}-{ }^{90} \mathrm{Y}$	≤ 0.02
	${ }^{110 m} \mathrm{Ag}$	≤ 0.007
	${ }^{116} \mathrm{Cd}$	$1.138(5)$
	${ }^{232} \mathrm{Th}$	$0.07(2)$
	${ }^{228} \mathrm{Ra}$	≤ 0.005
${ }^{232} \mathrm{Th}$	${ }^{228} \mathrm{Th}$	$0.020(1)$
	${ }^{227} \mathrm{Ac}$	≤ 0.002
	${ }^{238} \mathrm{U}$	$0.58(4)$
	${ }^{234} \mathrm{U}$	$0.6(1)$
${ }^{235} \mathrm{U}$	${ }^{230} \mathrm{Th}$	≤ 0.13
${ }^{238} \mathrm{U}$	${ }^{226} \mathrm{Ra}$	≤ 0.006
	${ }^{210} \mathrm{~Pb}$	$0.70(4)$
		$2.14(2)$
Total α		

2. Time-amplitude analysis of fast subchains

Selection of subchains: events with known energies and time differences

$$
\begin{aligned}
& { }^{224} \mathrm{Ra}\left(Q_{\alpha}=5789 \mathrm{keV} ; T_{1 / 2}=3.632 \mathrm{~d}\right) \\
& \rightarrow{ }^{220} \mathrm{Rn}\left(Q_{\alpha}=6405 \mathrm{keV} ; T_{1 / 2}=55.6 \mathrm{~s}\right) \rightarrow{ }^{216} \mathrm{Po} \\
& \left(Q_{\alpha}=6906 \mathrm{keV} ; T_{1 / 2}=0.145 \mathrm{~s}\right) \rightarrow{ }^{212 \mathrm{~Pb}} \text {. }
\end{aligned}
$$

α peaks of ${ }^{224} \mathrm{Ra},{ }^{220} \mathrm{Rn},{ }^{216} \mathrm{Po}$.
$\mathrm{T}_{1 / 2}:{ }^{220} \mathrm{Rn}=58(4) \mathrm{s} ;{ }^{216} \mathrm{Po}=$
$0.136(6) \mathrm{s}$

$$
\begin{aligned}
& { }^{212} \mathrm{Bi}\left(Q_{\alpha}=6207 \mathrm{keV}\right) \rightarrow \\
& { }^{208} \mathrm{Tl}\left(Q_{\beta}=4999 \mathrm{keV}, T_{1 / 2}=3.053 \mathrm{~min}\right) \rightarrow{ }^{208} \mathrm{~Pb} \\
& \text { Energy (keV) } \\
& \text { Energy (keV) } \\
& \text { Time interval (s) }
\end{aligned}
$$

α peak of ${ }^{212} \mathrm{Bi}$ and β distribution of ${ }^{208} \mathrm{TI}$
α / β ratio $=0.114(7)+0.0133(12) E_{\alpha}^{10}$

3. Front-edge analysis

Front-edge parameter (rise time) = time between the signal origin and time of 0.7 of max value

In this way ${ }^{212} \mathrm{Bi}^{212} \mathrm{Po}$ events are selected

$$
\begin{aligned}
& { }^{212} \mathrm{Bi}\left(Q_{\beta}=2252 \mathrm{keV} ; T_{1 / 2}=60.55 \mathrm{~m}\right) \\
& \quad \rightarrow{ }^{212} \mathrm{Po}\left(Q_{\alpha}=8954 \mathrm{keV} ; T_{1 / 2}=0.299 \mu \mathrm{~s}\right) \rightarrow{ }^{208} \mathrm{~Pb}
\end{aligned}
$$

(also pile-ups of CWOs with LS)

Results

> 1. $2 \beta 2 v$ decay of ${ }^{116} \mathrm{Cd}$ (g.s. to g.s.) Selection of evts: PSD and FE

$\gamma(\beta)$ energy spectrum, CWO-1 and CWO-2, 26831 h together with the main components

Background model:
(1) internal contaminations of CWOs by ${ }^{40} \mathrm{~K},{ }^{90} \mathrm{Sr} /{ }^{90} \mathrm{Y},{ }^{110 \mathrm{~m}} \mathrm{Ag},{ }^{232} \mathrm{Th},{ }^{238} \mathrm{U}$
(2) external γ 's from Cu shield, PMTs, quartz light-guides $\left({ }^{4} \mathrm{~K}, \mathrm{Th} / \mathrm{U}\right)$

Initial kinematics: DECAYO generator Simulations: EGS4

Starting point: 640-1600 keV (20 keV step) Final point: 2800-3600 keV
$\chi^{2} / \mathrm{ndf}=1.15-1.75$
Best fit (720-3560 keV, $\chi^{2} / \mathrm{ndf}=1.15$): $92923 \pm 3882 \beta 2 v$ events (126341 ± 527 in the whole spectrum)
$\mathrm{T}_{1 / 2}(2 \beta 2 v)=(2.630 \pm 0.011$ (stat) $) \times 10^{19} \mathrm{yr}$

Examples of simulations of 2β processes

${ }^{116} \mathrm{CdWO}_{4}$ response to 2β processes in ${ }^{116} \mathrm{Cd}$ (EGS4 + DECAYO)

TABLE IV. Systematic uncertainties of $T_{1 / 2}(\%)$.

Source	Contribution
Number of ${ }^{116} \mathrm{Cd}$ nuclei	± 0.12
PSD and front-edge cuts efficiency	± 1.2
Model of background	${ }_{-2.93}^{+3.25}$
Localization of radioactive contaminations	${ }_{-2.54}^{+1.53}$
Interval of the fit	${ }_{-1.34}^{+0.02}$
Energy scale instability	± 1.72
$2 \nu 2 \beta$ spectral shape	± 1.0
Total systematic error	${ }_{-4.69}^{+4.30}$

$$
\mathrm{T}_{1 / 2}(2 \beta 2 v)=\left(2.630 \pm 0.011(\text { stat })^{+0.113}{ }_{-0.123}(\text { sys })\right) \times 10^{19} \mathrm{yr}
$$

$N^{\prime 2} E_{\text {eff }}=1 /\left(G_{2 v} \times T_{1 / 2}\right)^{1 / 2}$

TABLE V. Effective nuclear matrix elements for $2 \nu 2 \beta$ decay of ${ }^{116} \mathrm{Cd}$ to the ground state of ${ }^{116} \mathrm{Sn}$ obtained by using different calculations of the phase space factors.

Phase space factor $\left(10^{-21} \mathrm{yr}^{-1}\right)$,	Effective nuclea
Reference	matrix element
$2764[68]$	$0.1173_{-0.0024}^{+0.0027}$
$3176[68]$ (SSD model)	$0.1094_{-0.0025}^{+0.023}$
$2688[69]$	$0.1189_{-0.0025}^{+0.0027}$

[68] J. Kotila and F. Iachello, PRC 85 (2012) 034316_{14} [69] M. Mirea et al., Rom. Rep. Phys. 67 (2015) 872
2. $2 \beta 0 v$ decay of ${ }^{116} \mathrm{Cd}$ (g.s. to g.s.)
$26831 \mathrm{~h}+8493 \mathrm{~h}$ from previous stage with background rate ~ 0.1 counts/(keV kg yr) at 2.7-2.9 MeV $=35324 \mathrm{~h}$

$\gamma(\beta)$ energy spectrum, CWO-1 and CWO-2, 35324 h together with the main components

Best fit: 2160-3740 keV, $\chi^{2} /$ ndf $=1.01$ $S=-4.5 \pm 14.2 \rightarrow S<19.1$ counts $\mathrm{T}_{1 / 2}(2 \beta 0 \mathrm{v})>2.2 \times 10^{23} \mathrm{yr} 90 \%$ C.L.

$\mathbf{m}_{v}-\lambda-\eta$ ellipsoid: limits on m_{v}, λ, η
3. 2β decays to excited levels, $2 \beta 0 v$ decays with majoron(s) emission, Lorentz violating $2 \beta 2 v$ decay

Fit of experimental spectrum by background model + 2 $\beta 2 v$ distribution + additional distribution for transition to excited state

Fits for majorons with spectral index $\mathrm{SI}=1,2$ (at higher energies) and SI = 3, 4, 7 (at lower energies)

Fit for $2 \beta 2 v$ and $2 \beta 0 v$ decays to the first $0_{1}{ }^{+}$level of ${ }^{116} \mathrm{Sn}(1757 \mathrm{keV})$

TABLE VI. Summary of the obtained results on 2β processes in ${ }^{116} \mathrm{Cd}$. The limits are given at 90% C.L., except of the results of [47], obtained at 68% C.L.

	Transition, level of		Best previous limits (yr) Decay Roference
2ν	g.s.	$\left(2.63_{-0.12}^{+0.11}\right) \times 10^{19} \mathrm{yr}$	see Table I 116 $\mathrm{Sn}(\mathrm{keV})$
	$T_{1 / 2}(\mathrm{yr})$	$\left(\begin{array}{l}\text { Fig. } 12\end{array}\right.$	
2ν	$2^{+}(1294)$	$\geq 9.8 \times 10^{20}$	$\geq 2.3 \times 10^{21}[48]$
2ν	$0^{+}(1757)$	$\geq 5.9 \times 10^{20}$	$\geq 2.0 \times 10^{21}[48]$
2ν	$0^{+}(2027)$	$\geq 1.1 \times 10^{21}$	$\geq 2.0 \times 10^{21}[48]$
2ν	$2^{+}(2112)$	$\geq 2.5 \times 10^{21}$	$\geq 1.7 \times 10^{20}[47]$
2ν	$2^{+}(2225)$	$\geq 7.5 \times 10^{21}$	$\geq 1.0 \times 10^{20}[47]$
0ν	g.s.	$\geq 2.2 \times 10^{23}$	$\geq 1.7 \times 10^{23}[32]$
0ν	$2^{+}(1294)$	$\geq 7.1 \times 10^{22}$	$\geq 2.9 \times 10^{22}[32]$
0ν	$0^{+}(1757)$	$\geq 4.5 \times 10^{22}$	$\geq 1.4 \times 10^{22}[32]$
0ν	$0^{+}(2027)$	$\geq 3.1 \times 10^{22}$	$\geq 0.6 \times 10^{22}[32]$
0ν	$2^{+}(2112)$	$\geq 3.7 \times 10^{22}$	$\geq 1.7 \times 10^{20}[47]$
0ν	$2^{+}(2225)$	$\geq 3.4 \times 10^{22}$	$\geq 1.0 \times 10^{20}[47]$
$0 \nu \chi^{0} n=1$	g.s.	$\geq 8.2 \times 10^{21}$	$\geq 8.5 \times 10^{21}[45]$
$0 \nu \chi^{0} n=2$	g.s.	$\geq 4.1 \times 10^{21}$	$\geq 1.7 \times 10^{21}[32]$
$0 \nu \chi^{0} n=3$	g.s.	$\geq 2.6 \times 10^{21}$	$\geq 0.8 \times 10^{21}[32]$
$0 \nu \chi^{0} \chi^{0} n=3$	g.s.	$\geq 2.6 \times 10^{21}$	$\geq 0.8 \times 10^{21}[32]$
$2 \nu L V n=4$	g.s.	$\geq 1.2 \times 10^{21}$	\cdots
$0 \nu \chi^{0} \chi^{0} n=7$	g.s.	$\geq 8.9 \times 10^{20}$	$\geq 4.1 \times 10^{19}[77]$

TABLE VII. Limits on lepton-number violating parameters. The limits are given at 90% C.L.

Parameter	Limit
Effective light Majorana neutrino mass $\left\langle m_{\nu}\right\rangle$	$\leq(1.0-1.7) \mathrm{eV}$
Effective heavy Majorana neutrino mass $\left\|\left\langle m_{\nu_{h}}^{-1}\right\rangle\right\|^{-1}$	$\geq(10-28) \times 10^{6} \mathrm{GeV}$
Right-handed current admixture $\langle\lambda\rangle$	$\leq(1.8-22) \times 10^{-6}$
Right-handed current admixture $\langle\eta\rangle$	$\leq(1.6-21) \times 10^{-8}$
Coupling constant of neutrino with majoron $\left\langle g_{e e}\right\rangle$	
$\chi^{0}, n=1$	$\leq(6.1-9.3) \times 10^{-5}$
$\chi^{0}, n=3$	$\leq 7.7 \times 10^{-2}$
$\chi^{0} \chi^{0}, n=3$	$\leq(0.69-6.9)$
$\chi^{0} \chi^{0}, n=7$	$\leq(0.57-5.7)$
R -parity violating parameter λ_{111}^{\prime}	$\leq 2.5 \times 10^{-4} \times f($ see text $)$
Lorentz-violating parameter $\stackrel{\circ}{\text { of }}^{\circ}$	$\leq 4.0 \times 10^{-6} \mathrm{GeV}$
NME for m_{v} :	
J. Barea et al., PRC 91 (2015 034304 (IBM)	
F. Simkovic et al., PRC 87 (2013) 045501 (QRPA)	
N.L. Vaquero et al., PRL 111 (2013) 142501 (EDFT)	
J. Hyvärinen et al., PRC 91 (2015) 024613 (pnQRPA)	
L.S. Song et al., PRC 95 (2017) 024305 (EDFT)	
PSF:	
J. Kotila, F. Iachello, PRC 85 (2012) 034316	

Conclusions

After near 5 yr of data taking at LNGS (3600 m w.e.), the Aurora experiment to investigate 2β processes in ${ }^{116} \mathrm{Cd}$ with 1.162 kg of enriched (82\%) ${ }^{116} \mathrm{CdWO}_{4}$ scintillators is finished
$\mathrm{T}_{1 / 2}$ for $2 \beta 2 v$ is precisely measured: $\mathrm{T}_{1 / 2}(2 \beta 2 v)=2.63^{+0.11}{ }_{-0.12} \times 10^{19} \mathrm{yr}$
The most stringent limit for $2 \beta 0 v$ is obtained: $T_{1 / 2}(2 \beta 0 v)>2.2 \times 10^{23} \mathrm{yr}$, equivalent to Majorana v mass limits: $\mathrm{m}_{v}<1.0-1.7 \mathrm{eV}$ (depending on NME)

Limits on $2 \beta 2 v$ and $2 \beta 0 v$ decays to excited levels: $\mathrm{T}_{1 / 2}>10^{20}-10^{22} \mathrm{yr}$
Limits on $2 \beta 0 v$ decays with different majorons: $\mathrm{T}_{1 / 2}>10^{21}-1^{22} \mathrm{yr}$
Limits on right-handed admixtures in weak interaction, heavy v mass, majoron-neutrino coupling constants, Lorentz-violating $2 \beta 2 v$ decay

Děkuji za pozornost!

P.S. Lorentz-violating $2 \boldsymbol{2} 2 \mathrm{v}$ decay

$$
\begin{aligned}
& d \Gamma / d t_{1} d t_{2}=C \cdot e_{1} p_{1} F\left(t_{1}, Z\right) \cdot e_{2} p_{2} F\left(t_{2}, Z\right) \cdot\left[\left(t_{0}-t_{1}-t_{2}\right)^{5}+10 a_{\mathrm{of}}^{(3)}\left(t_{0}-t_{1}-t_{2}\right)^{4}\right] \\
& \Gamma=\Gamma_{2 \nu}+\Gamma_{2 \nu \mathrm{LV}} \\
& \Gamma_{2 \nu}=C I_{5}, \quad \Gamma_{2 \nu \mathrm{LV}}=10 a_{\mathrm{of}}^{\circ(3)} \cdot C I_{4} \\
& I_{5}=\int_{0}^{t_{0}} d t_{1} e_{1} p_{1} F\left(t_{1}, Z\right) \times \int_{0}^{t_{0}-t_{1}} d t_{2} e_{2} p_{2} F\left(t_{2}, Z\right)\left(t_{0}-t_{1}-t_{2}\right)^{5} \\
& I_{4}=\int_{0}^{t_{0}} d t_{1} e_{1} p_{1} F\left(t_{1}, Z\right) \times \int_{0}^{t_{0}-t_{1}} d t_{2} e_{2} p_{2} F\left(t_{2}, Z\right)\left(t_{0}-t_{1}-t_{2}\right)^{4} \\
& 10 a_{\mathrm{of}}^{(3)}=\frac{\Gamma_{2 \nu \mathrm{LV}}}{\Gamma_{2 \nu}} \cdot \frac{I_{5}}{I_{4}}=\frac{T_{1 / 2}^{2 \nu}}{T_{1 / 2}^{2 \nu \mathrm{LV}} \cdot \frac{I_{5}}{I_{4}}}
\end{aligned}
$$

In the Primakoff-Rosen approximation $\mathbf{F}(\mathbf{t}, \mathbf{Z}) \sim \mathbf{e} \mathbf{p}$
$I_{5}=t_{0}^{7}\left(t_{0}^{4}+22 t_{0}^{3}+220 t_{0}^{2}+990 t_{0}+1980\right) / 83160$
$I_{4}=t_{0}^{6}\left(t_{0}^{4}+20 t_{0}^{3}+180 t_{0}^{2}+360 t_{0}+1260\right) / 37800$

Monument in Kyiv to Vitaly Primakov（revolutioner），grand－uncle of Henry Primakoff

Stan名站等f

Primakoff－Rosen approximation

[^0]: ${ }^{\mathrm{a}}$ The result of NEMO-2 was re-estimated as $T_{1 / 2}=[2.9 \pm 0.3($ stat $) \pm 0.2($ sys $)] \times 10^{19} \mathrm{yr}$ in [46].

