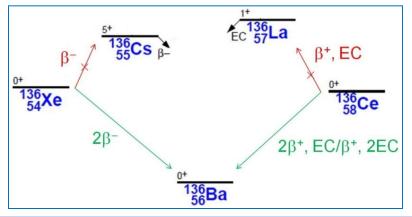
New limits on 2β processes in ¹⁰⁶Cd

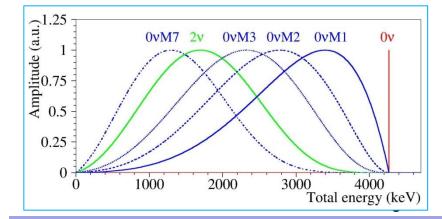
<u>V.I. Tretyak^{a,b}</u>, P. Belli^{c,d}, R. Bernabei^{c,d}, V.B. Brudanin^e,
F. Cappella^f, V. Caracciolo^f, R. Cerulli^f, D.M. Chernyak^a,
F.A. Danevich^a, S. d'Angelo^{c,d,†}, A. Incicchitti^{b,g}, M. Laubenstein^f,
V.M. Mokina^a, D.V. Poda^{a,h}, O.G. Polischuk^{a,b}, I.A. Tupitsynaⁱ

^a Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine
^b INFN, sezione di Roma "La Sapienza", I-00185 Rome, Italy
^c Dipartimento di Fisica, Universita di Roma "Tor Vergata", I-00133 Rome, Italy
^d INFN sezione Roma "Tor Vergata", I-00133 Rome, Italy
^e Joint Institute for Nuclear Research, 141980 Dubna, Russia
^f INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy
^g Dipartimento di Fisica, Universita di Roma "La Sapienza", I-00185 Rome, Italy
^h Centre de Sciences Nucleaires et de Sciences de la Matiere, 91405 Orsay, France
ⁱ Institute of Scintillation Materials, 61001 Kharkiv, Ukraine

Contents:


- 1. Introduction and motivation
- 2. R&D of 106 CdWO₄
- 3. Experimental setup and measurements
- 4. Results for ¹⁰⁶Cd
- 5. Conclusions

Double beta decay: $(A,Z) \rightarrow (A,Z\pm 2)$


Allowed in SM: $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2v_e$ – two-neutrino $2\beta^-$ decay $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Forbidden in SM, $\Delta L=2$: $(A,Z) \rightarrow (A,Z+2) + 2e^-$ – neutrinoless $2\beta^-$ decay $\oslash \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $(A,Z) \rightarrow (A,Z+2) + 2e^- + M$ – $2\beta^-0v$ decay with Majoron emission $2\beta^+/\epsilon\beta^+/2\epsilon$ processes, decays to excited states, different Majorons ... $2\beta 0v$ requires: $v_e = \widetilde{v}_e$ (Majorana particle)

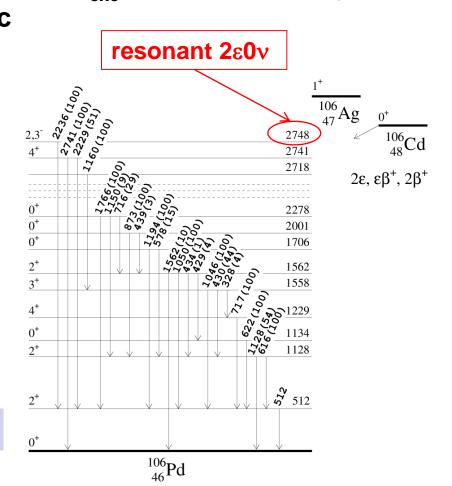
 $m(v_e) \neq 0$ (or right-handed admixtures, ...)

Many extensions of the SM predict $m(v_e) \neq 0$ and, as a result, $2\beta 0v$ processes. Experimental observation of this exotic phenomenon would be an unambiguous signal of new physics which lies beyond the SM.

 β^- , β^+ energetically forbidden $2\beta^-$, $2\beta^+$ allowed

 e_1+e_2 energy spectra in different 2β modes

Status of experimental investigations of 2β decay


2 β [_]	2 β+/εβ+/2ε
35 candidates	34 candidates
Nat. abundances δ ~ (5-10-100)%	Typical δ < 1% with few exclusions
Q _{2β} up to 4.3 MeV	$Q_{2\beta}$ > 2 MeV only for 6 nuclides
2β2ν is registered for 11 nuclei (⁴⁸ Ca, ⁷⁶ Ge, ⁸² Se, ⁹⁶ Zr, ¹⁰⁰ Mo, ¹¹⁶ Cd, ¹²⁸ Te, ¹³⁰ Te, ¹³⁶ Xe, ¹⁵⁰ Nd, ²³⁸ U) with T _{1/2} = 10 ¹⁸ – 10 ²⁴ yr	$2\epsilon^2 \nu - {}^{130}Ba? (T_{1/2} \sim 10^{21} \text{ yr}) - {}^{78}\text{Kr}? (T_{1/2} \sim 10^{22} \text{ yr})$
Sensitivity to $2\beta 0\nu$ up to 10^{25} yr	Sensitivity to $0v$ up to 10^{21} yr

One positive claim on observation of $2\beta^{-}0\nu$ in ⁷⁶Ge by part of HM (T_{1/2} = 2.2×10²⁵ yr), on the edge of current sensitivity of GERDA (2.1×10²⁵ yr)

2β+/εβ+/2ε studies are less popular but nevertheless: Information from 2β+/εβ+/2ε is supplementary to 2β⁻ (possible contributions of right-handed currents to 0v, [M. Hirsch et al., ZPA 347 (1994) 151])

¹⁰⁶Cd is attractive because of:

- (1) $Q_{2\beta} = 2775.39 \pm 0.10 \text{ keV} \text{one of only six } 2\beta^+ \text{ nuclides}$
- (2) Quite high natural abundance $\delta = 1.25 \pm 0.06$ %
- (3) Possibility of resonant $2\epsilon_{0\nu}$ captures to excited levels of daughter 106 Pd (KL₃0 ν to E_{exc} = 2748.2(4) keV, Q E_{exc} = -0.33\pm0.41 keV)
- (4) Theoretical $T_{1/2}$ are quite optimistic for some modes (g.s. \rightarrow g.s.): $2\epsilon 2\nu - (2.0-2.6)\times 10^{20}$ yr [1], -4.8×10^{21} yr [2], $\epsilon\beta^+2\nu - (1.4-1.6)\times 10^{21}$ yr [1], -2.9×10^{22} yr [2] [1] S. Stoica et al., EPJA 17 (2003) 529
 - [2] J. Suhonen, PRC 86 (2012) 024301

Decay scheme of ¹⁰⁶Cd

Current experiments to search for 2 β processes in ¹⁰⁶Cd

(1) TGV-2: 32 planar HPGe + 16 foils of ¹⁰⁶Cd (δ=75%), LSM (France) T_{1/2} limits for different modes: ~ 10²⁰ yr [N.I. Rukhadze et al., NPA 852 (2011) 197, BRASP 75 (2011) 879]

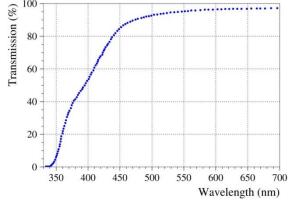
 (2) COBRA: 32/64 semiconductors CdZnTe 1 cm³ each, LNGS (Italy) T_{1/2} limits for different modes: ~ 10¹⁸ yr [K. Zuber, Prog. Part. Nucl. Phys. 64 (2010) 267]

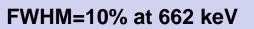
 (3) First stage of our measurements with ¹⁰⁶CdWO₄ crystal scintillator (without HPGe), LNGS (Italy)
T_{1/2} limits for different modes: ~ 10²⁰–10²¹ yr (mostly the best limits) [P. Belli et al., PRC 85 (2012) 044610]

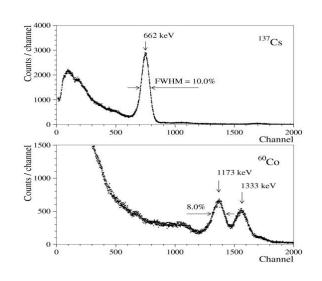
R&D of ¹⁰⁶CdWO₄

Purification of enriched ^{nat}Cd & ¹⁰⁶Cd by vacuum distillation (~ 0.1 ppm; Kharkiv Phys. Techn. Institute, Kharkiv, Ukraine); Synthesis of CdWO₄ & ¹⁰⁶CdWO₄ powders; Growth of ^{nat}CdWO₄ of improved quality (Czochralski method). [R. Bernabey et al., Metallofiz. Nov. Tekhn. 30 (2008) 477]

Growth of ¹⁰⁶CdWO₄ crystal by Low-Thermal-Gradient Czochralski technique (Nikolaev Institute of Inorg. Chem., Novosibirsk, Russia): output ~90%, loss of powder <0.3%, better quality and radiopurity [P. Belli et al., NIMA 615 (2010) 301]

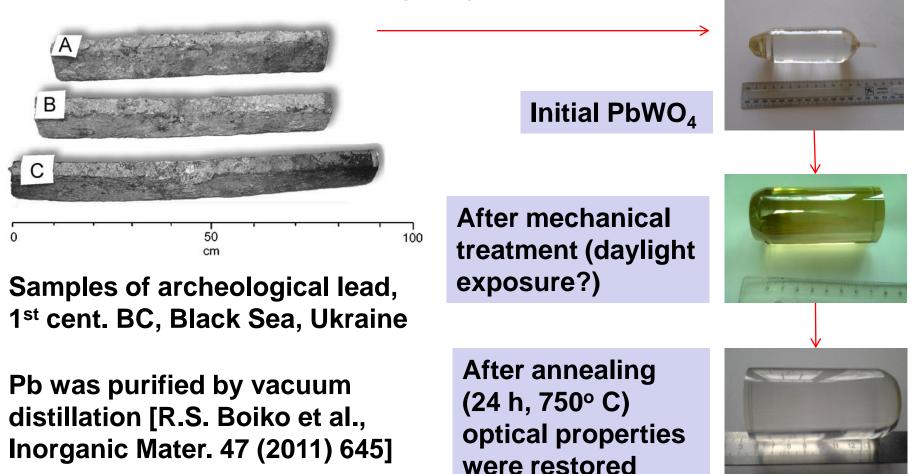

Example of CdWO₄ grown by the LTG Cz technique (20 kg) [V.V. Atuchin et al., J. Solid State Chem., in press]


¹⁰⁶CdWO₄ crystal scintillator (¹⁰⁶Cd enrichment – 66%)

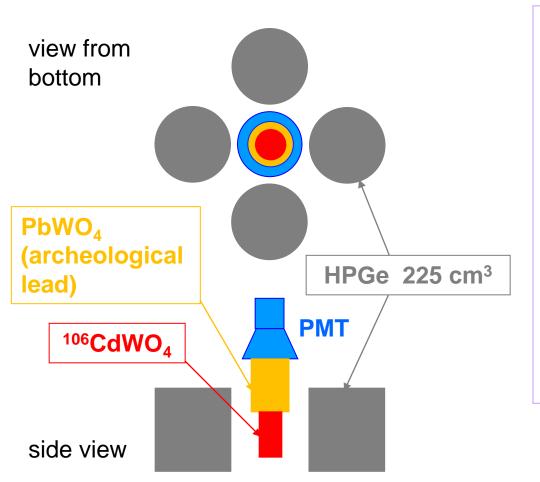


Attenuation length 60 cm (the best reported for CdWO₄)

¹⁰⁶CdWO₄ boule 231 g (87.2% of initial charge) Total irrecoverable losses of ¹⁰⁶Cd = 2.3%



¹⁰⁶CdWO₄ scintillator 215 g


Excellent optical and scintillation properties thanks to special R&D to purify raw materials and Low-Thermal-Gradient Czochralski technique to grow the crystal [P. Belli et al., NIMA 615 (2010) 301]

1st stage: ¹⁰⁶CdWO₄ scintillator in low background DAMA/R&D set-up 2nd stage: ¹⁰⁶CdWO₄ in coinc./anticoincidence with 4 HPGe detectors

To suppress radioactivity from PMT, PbWO₄ light-guide is used. It is grown from archeological lead: A(²¹⁰Pb) < 0.3 mBq/kg [F.A. Danevich et al., NIMA 603 (2009) 328]

¹⁰⁶CdWO₄ in the GeMulti setup with 4 HPGe detectors (in one cryostat)

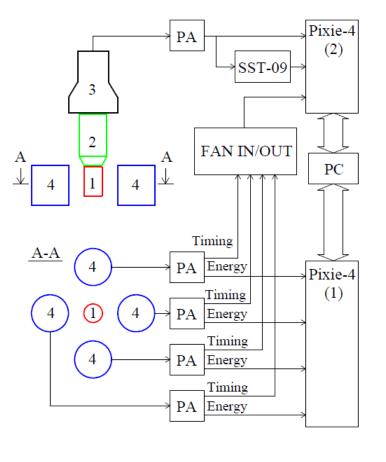
4 HPGe, ~ 225 cm³ each, in one cryostat

¹⁰⁶CdWO₄ in coincidence/ anticoincidence with HPGe

Detection efficiency ~ 5 – 7%

External shield: radiopure Cu + Pb, sealed in PMMA air-tight box flushed by nitrogen

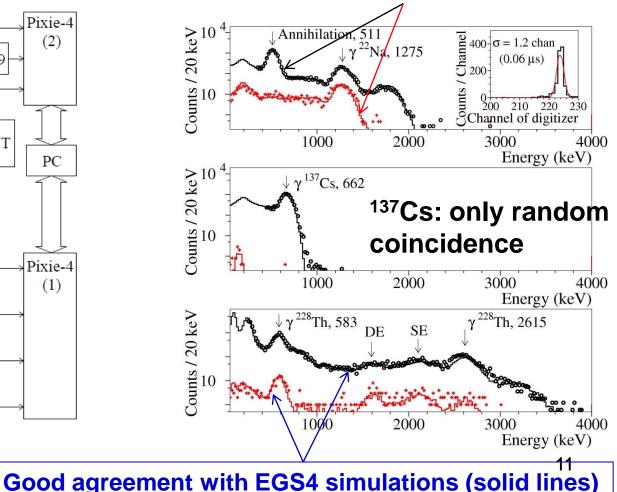
Laboratori Nazionali del Gran Sasso 3600 m w.e.

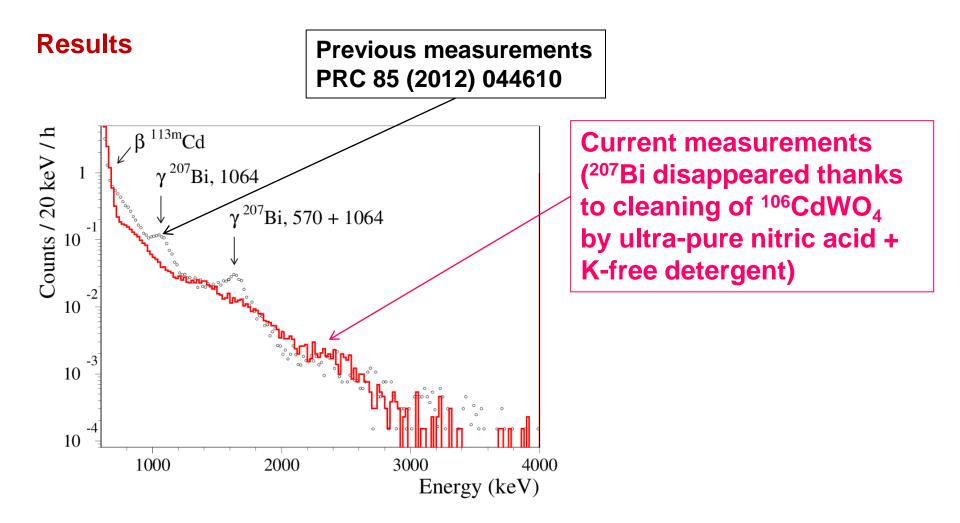

Estimated sensitivity to two neutrino $\epsilon\beta^+$ and $2\beta^+$ in ¹⁰⁶Cd: $T_{1/2} \sim 10^{20} - 10^{21}$ yr Theory: $2\nu 2K \ 10^{20} - 5 \times 10^{21}$ yr $2\nu\epsilon\beta^+ \ 8 \times 10^{20} - 4 \times 10^{22}$ yr

DAQ:

- time and energy for each HPGe;

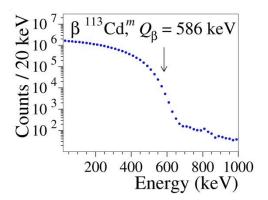
- shape of ¹⁰⁶CdWO₄ signal (>580 keV);

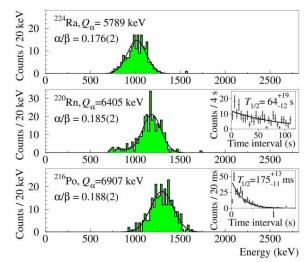

 ¹⁰⁶CdWO₄ and HPGe signals were recorded to find c/ac offline

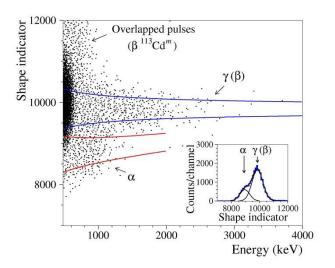


Calibration: ²²Na, ⁶⁰Co, ¹³⁷Cs, ²²⁸Th ¹⁰⁶CdWO₄ – FWHM_{γ} = (21.7×E_{γ})^{1/2}

²²Na:

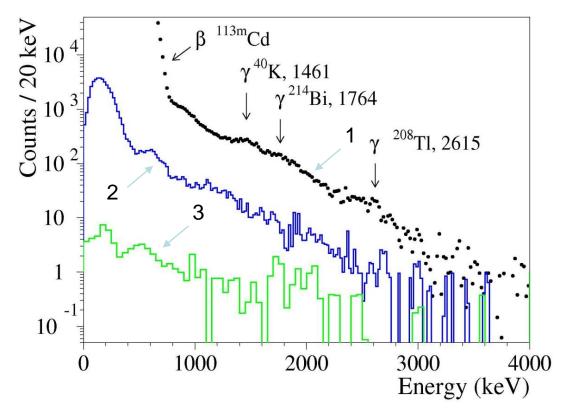

no coincidence with HPGe and coincidence with 511 keV in HPGe




Spectrum of ¹⁰⁶CdWO₄ (β/γ events) measured during 13085 h (anticoincidence with HPGe) [F.A. Danevich et al., AIP CP 1549 (2013) 201]

Internal contamination of ¹⁰⁶CdWO₄

^{113m}Cd activity 116(4) Bq/kg (it seems that before enrichment, Cd was used as a shielding somewhere at reactor)

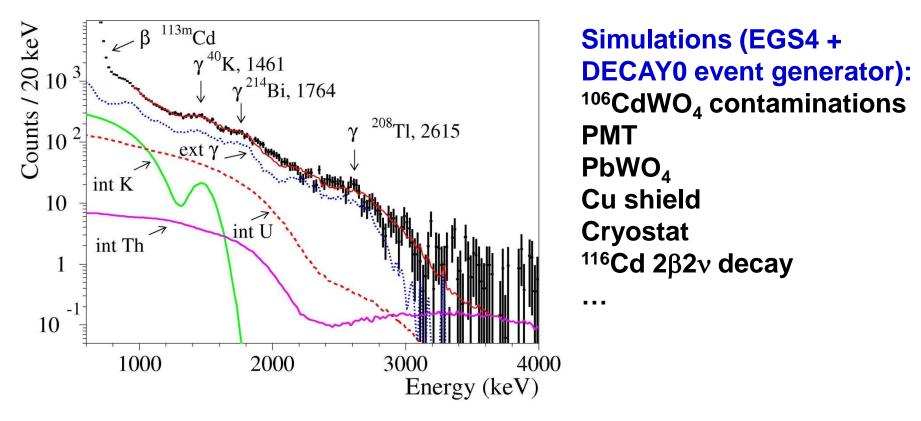


Pulse-shape discrimination: total α activity 2.1(2) mBq/kg

Time-amplitude analysis: ²²⁸Th 0.042(2) mBq/kg

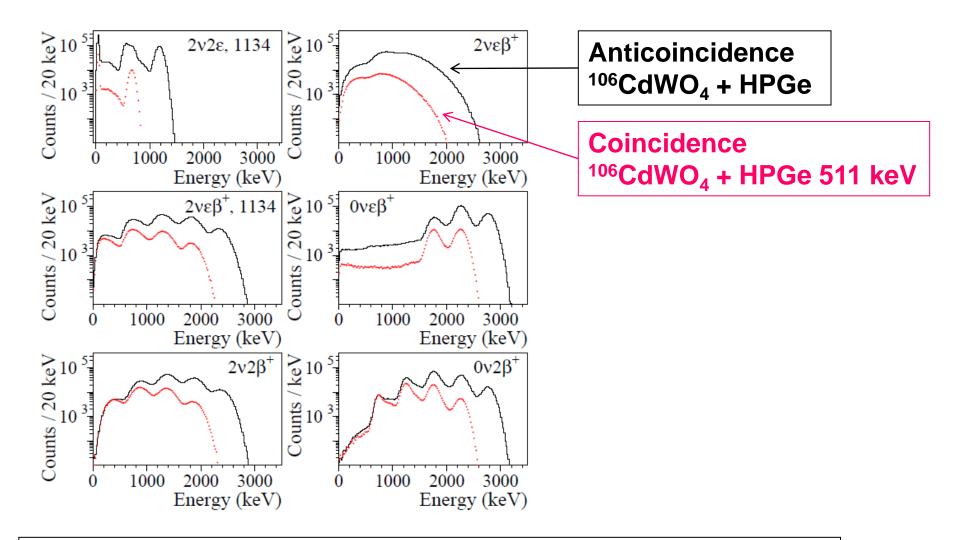
Chain	Nuclide	Activity (mBq/kg)	
²³² Th	²³² Th	≤ 0.07	
	²²⁸ Th	0.042(4)	
²³⁸ U	²³⁸ U	≤ 0.6	
	²²⁶ Ra	0.012(3)	
	⁴⁰ K	≤ 1.4	
	^{113m} Cd	116(4) × 10 ³	
[F.A. Da	t al., ₁₃		

¹⁰⁶CdWO₄ energy spectra measured during 13085 h

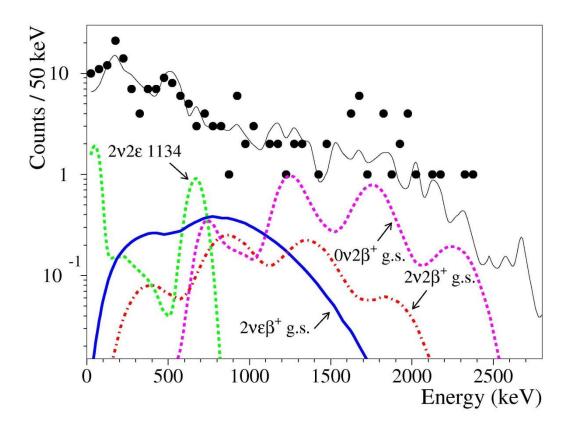

- 1 In anticoincidence with the HPGe detectors (AC);
- 2 In coincidence with HPGe when energy release in at least one HPGe detector is E(HPGe) > 200 keV (CC >200);
- 3 In coincidence with E(HPGe) = 511 keV (CC 511)

AC and CC>200 spectra contain 95.5% of $\gamma(\beta)$ events selected by PSD; CC=511 – 99.7% events

HPGe energy spectra (sum of 4 detectors) over 13085 h

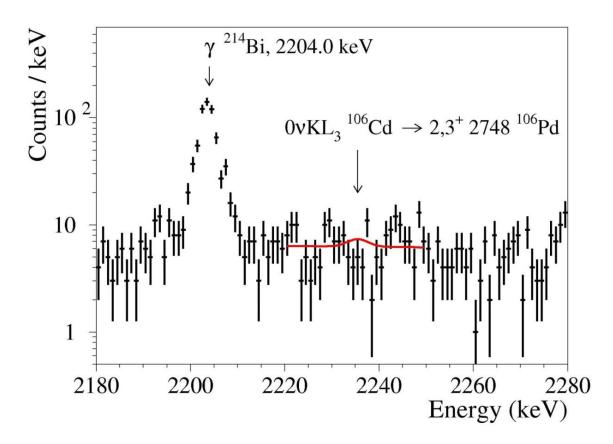

¹⁰⁶CdWO₄ in anticoincidence with HPGe

Energy spectrum of $\gamma(\beta)$ events in ¹⁰⁶CdWO₄ accumulated over 13085 h (points) in anticoincidence with HPGe together with the background model (red continuous line).


Main components of the background are shown: internal K, Th and U; external γ from K, U and Th contamination of the set-up 16

Simulation of 2β processes in ¹⁰⁶Cd: EGS4 + DECAY0 event generator

DECAY0: O.A. Ponkratenko et al., Phys. At. Nucl. 63 (2000) 1282


¹⁰⁶CdWO₄ in coincidence with 511 keV in HPGe

Energy spectrum of the ¹⁰⁶CdWO₄ detector accumulated over 13085 h in coincidence with 511 keV annihilation γ quanta at least in one of the HPGe detectors (circles).

The Monte Carlo simulated distributions for different modes of 2ν and $0\nu 2\epsilon$, $\epsilon\beta^+ 2\beta^+$ decays are shown (excluded at 90% C.L.).

HPGe data

Sum energy spectrum of four HPGe detectors accumulated over 13085 h in region where the 2236 keV peak from deexcitation of 2748 keV excited level of ¹⁰⁶Pd is expected (possible resonant $0_V KL_3$ electron capture). $T_{1/2} \ge 8.7 \times 10^{20}$ yr at 90% C.L.

Limits (preliminary)	on 2ε, εβ+,	2β ⁺ processes in	¹⁰⁶ Cd
----------------------	-------------	------------------------------	-------------------

Decay, level of	<i>T</i> _{1/2} (yr) at 90% C.L.		
¹⁰⁶ Pd (keV)	Present work		Previous limit
2ν2ε, 0 ₁ + 1134	≥ 3.1 ×10 ²⁰	(AC)	≥ 1.7×10 ²⁰ [1]
0ν2ε, g.s.	≥ 2.6 ×10 ²⁰	(AC)	≥ 1.0×10 ²¹ [1]
2νεβ⁺, g.s.	≥ 1.8 ×10 ²¹	(CC 511)	≥ 4.1×10 ²⁰ [2]
2νεβ ⁺ , 0 ₁ + 1134	≥ 1.4 ×10 ²¹	(CC 511)	≥ 3.7×10 ²⁰ [1]
0 νεβ⁺, g.s.	≥ 1.6 ×10 ²¹	(CC >200)	≥ 2.2×10 ²¹ [1]
2ν2β⁺, g.s.	≥ 4.7 ×10 ²¹	(CC 511)	≥ 4.3×10 ²⁰ [1]
0 ν 2 β⁺, g.s.	≥ 2.2 × 10 ²¹	(CC 511)	≥ 1.2×10 ²¹ [1]
0v2 <i>K</i> , 2718	≥ 6.3 ×10 ²⁰	(CC 511)	≥ 4.3×10 ²⁰ [1]
0∨ <i>KL</i> ₁ , 4⁺ 2741	\geq 5.0×10 ²⁰	(HPGe)	≥ 9.5×10 ²⁰ [1]
0∨ <i>KL</i> ₃ , 2,3 [–] 2748	≥ 8.7 ×10 ²⁰	(HPGe)	≥ 4.3 ×10 ²⁰ [1]

[1] P. Belli et al., PRC 85 (2012) 044610[2] P. Belli et al., APP 10 (1999) 115

Also limits for 2 β processes to other excited levels of ¹⁰⁶Pd (512, 1128, 1134, 1562, 1706, 2001, 2278 keV) were set on the level of T_{1/2}~10¹⁹-10²¹ yr

Conclusions

- 1. The unique radiopure high quality CdWO₄ crystal scintillator was developed with enriched ¹⁰⁶Cd (66%, mass of 215 g);
- Measurements at LNGS with ¹⁰⁶CdWO₄ in low background set up with light guide from archeological lead and four HPGe detectors were performed during 13085 h (finished);
- 3. $\epsilon\beta^+0\nu/2\beta^+0\nu$ processes in ¹⁰⁶Cd are sensitive to $2\beta0\nu$ mechanism (mass or right-handed currents). New limits on 2ϵ , $\epsilon\beta^+$, $2\beta^+$ processes in ¹⁰⁶Cd to g.s. and excited levels were set on the level of $T_{1/2} > 10^{20} - 10^{21}$ yr. Half-life limit $T_{1/2}(\epsilon\beta^+2\nu) > 1.8\times10^{21}$ yr reached the region of theoretical predictions;
- 4. There is a possibility to increase experimental sensitivity in the ${}^{106}CdWO_4$ experiment to change HPGe detectors to close (almost ~4 π) CdWO₄ scintillators: (1) higher efficiency and (2) lower background.

Thanks for your attention!