Search for double beta decay of ¹¹⁶Cd with enriched ¹¹⁶CdWO₄ crystal scintillators (Aurora experiment)

<u>F.A. Danevich</u>^a, A.S. Barabash^b, P. Belli ^{c,d}, R. Bernabei ^{c,d}, F. Cappella^e, V.Caracciolo^e, R. Cerulli^e, D.M. Chernyak^a, S. d'Angelo^{c,d,+}, A. Incicchitti ^{f,g}, V.V.Kobychev^a, S.I. Konovalov^b, M. Laubenstein^e, V.M. Mokina^a, D.V. Poda^{a,h}, O.G. Polischuk^{a,f}, V.N. Shlegelⁱ, V.I. Tretyak^{a,f}, V.I. Umatov^b, Ya.V. Vasilievⁱ

^a Institute for Nuclear Research, Kyiv, Ukraine
^b Institute of Theoretical and Experimental Physics, Moscow, Russia
^c Dipartimento di Fisica, Universita di Roma "Tor Vergata", Rome, Italy
^d INFN sezione Roma "Tor Vergata", Rome, Italy
^e INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
^f INFN, sezione di Roma "La Sapienza", Rome, Italy
^g Dipartimento di Fisica, Universita di Roma "La Sapienza", Rome, Italy
^h Centre de Sciences Nucleaires et de Sciences de la Matiere, Orsay, France
ⁱ Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia
⁺ deceased

Puech Denys (1854 -1942) **Aurora**, Museum D'Orsay

In this presentation

- Introduction
- Aurora experiment
 - R&D of ¹¹⁶CdWO₄ crystal scintillators
 - Low background set-up
 - Data analysis
- Results and discussion
- Conclusions

• Introduction

^{116}Cd is promising 2 β candidate

Availability of cadmium tungstate crystal scintillators (CdWO₄) as detectors for 2β experiment with ¹¹⁶Cd

Advantages of ¹¹⁶Cd

- Large energy of decay $Q_{2\beta}$ = 2813.44(13) keV [1]
- Large isotopic abundance δ = 7.49(18)% [2] and possibility of enrichment by centrifugation
- Promising theoretical estimations of decay probability (see, e.g. [3, 4])

S. Rahaman et al., Phys. Lett. B 703 (2011) 412
 M. Berglund and M.E. Wieser, Pure Appl. Chem. 83 (2011) 397
 J.D.Vergados, H.Ejiri, F.Simkovic, Rep. Prog. Phys. 75 (2012) 106301
 J. Barea, J. Kotila, and F. Iachello Phys. Rev. Lett. 109 (2012) 042501

F.A. Danevich

R&D of enriched ¹¹⁶CdWO₄ crystal scintillators

Yield of crystal 87% Losses of 116 Cd $\approx 2\%$

scintillation elements

Optical transmission curve of ¹¹⁶CdWO₄ crystal before and after annealing

The excellent optical and scintillation properties of the crystal were obtained thanks to the deep purification of ¹¹⁶Cd and W, and the advantage of the lowthermal-gradient Czochralski technique to grow the crystal [1]

¹¹⁶CdWO₄ crystal (510 g) grown in 1986 for the Solotvina experiment [2]

[1] A.S. Barabash et al., JINST 06(2011) p08011[2] F.A.Danevich et al., JETP Lettt. 49 (1989) 476

F.A. Danevich

¹¹⁶CdWO₄ scintillation detector

FWHM \approx 5% at 2615 keV

Low background DAMA R&D set-up at LNGS

An event-by-event data acquisition system based on a 1 GS/s 8 bit transient digitizer (operated at 50 MS/s) records the time of each event and the pulse shape over a time window of \approx 100 µs from the ¹¹⁶CdWO₄ detectors

The background rate in the region of interest 2.7 - 2.9 MeV (after pulse-shape discrimination) is on the level of ≈ 0.12 counts/(yr keV kg)

F.A. Danevich

Data analysis pulse-shape discrimination (12 015 h)

Search for double beta decay of 116 Cd with enriched 116 CdWO₄ crystal scintillators

F.A. Danevich

Data analysis

front edge and time-amplitude analyses (12 015 h)

*Reference date: November 2014

F.A. Danevich

Radioactive contamination of ¹¹⁶CdWO₄

Chain	Nuclide	Activity (mBq/kg)
²³² Th	²³² Th	≤ 0.07
	²²⁸ Th	0.027(4)*
²³⁸ U	²³⁸ U	0.69(2)
	²²⁶ Ra	≤ 0.005
	²¹⁰ Po	0.57(3)
Total α		2.25(7)
	⁴⁰ K	≤0.9

*Reference date: November 2014

Segregation of Th, Ra and K in CdWO₄

Nuclide	Crystal	Rest of melt
⁴⁰ K	< 0.9	27(11)
²²⁶ Ra	< 0.005	64(4)
²²⁸ Th	0.04*	10(2)*

*Reference date: May 2014

 228 Th in the initial powder / crystal \approx 1.4 mBq/kg / 0.04 mBq/kg \approx 35

Thorium expected to be reduced by re-crystallization $\rightarrow \sim 1 \,\mu Bq/kg$

10

Two neutrino 2 β decay of ¹¹⁶Cd

 $T_{1/2}^{2\nu} = [2.62 \pm 0.02(stat.) \pm 0.14(syst.)] \times 10^{19} \text{ yr}$

11

F.A. Danevich

Search for double beta decay of ¹¹⁶Cd with enriched ¹¹⁶CdWO₄ crystal scintillators

TAUP 2015, Sep 7, Turin

Comparison with other experiments and averaged values

[1] H. Ejiri et al., J. Phys. Soc. Japan 64 (1995) 339; [2] F.A. Danevich et al., Phys. Lett. B 344 (1995) 72;
[3]R.Arnold et al., Z. Phys. C 72 (1996) 239; [4] F.A.Danevich et al., PRC 62 (2000) 045501; [5] F.A.Danevich et al., PRC 68 (2003) 035501; [6] V.I. Tretyak et al., AIP Conf. Proc. 1572 (2013) 110; [7] A.S. Barabash, PRC 81 (2010) 035501; [8] A.S. Barabash, NPA 935 (2015) 52

F.A. Danevich

Limit on $0\nu2\beta$ decay of ^{116}Cd

Sum of two runs with the background counting rate ≈0.1 cnt/(yr keV kg) in the energy interval 2.7-2.9 MeV

Fit in 2.5 - 3.2 MeV gives area of the effect $S = -3.7 \pm 10.2$ counts

limS = 13.3 counts at 90% CL [1]

$$T_{1/2}^{0\nu} \ge 1.9 \times 10^{23} \text{ yr}$$

Effective Majorana neutrino mass limits:

 $\langle m_v \rangle \le$ 1.6 eV [2] $\langle m_v \rangle \le$ (1.3– 1.7) eV [3]

[1] G.J. Feldman and R. D. Cousins, Phys. Rev. D 57 (1998) 3873
[2] J. Barea, J. Kotila, and F. lachello Phys. Rev. Lett. 109 (2012) 042501
[3] J.D. Vergados, H.Ejiri and F.Simkovic Rep. Prog. Phys. 75 (2012) 106301

F.A. Danevich

Results

Decay mode	Transition, level of ¹¹⁶ Sn	limT _{1/2} (yr) 90% CL	Best previous limit 90% CL
0ν	g.s.	\geq 1.9 \times 10 ²³	\geq 1.7 $ imes$ 10 ²³ [1]
0ν	2 ₁ +(1294 keV)	\geq 6.2 \times 10 ²²	\geq 2.9 × 10 ²² [1]
0ν	0 ₁ ⁺ (1757 keV)	\geq 6.3 \times 10 ²²	\geq 1.4 \times 10 ²² [1]
0ν	0 ₂ ⁺ (2027 keV)	\geq 4.5 \times 10 ²²	\geq 0.6 $ imes$ 10 ²² [1]
0ν	2 ₂ ⁺ (2112 keV)	\geq 3.6 \times 10 ²²	\geq 1.7 \times 10 20 [2] (at 68% CL)
0ν	2 ₃ ⁺ (2225 keV)	\geq 4.1 \times 10 ²²	\geq 1.0 \times 10^{20} [2] (at 68% CL)
0vM1	g.s.	\geq 1.1 \times 10 ²²	\geq 0.8 $ imes$ 10 ²² [1]
0vM2	g.s.	\geq 0.9 \times 10 ²¹	\geq 0.8 $ imes$ 10 ²¹ [1]
$0\nu M^{\text{bulk}}$	g.s.	\geq 2.1 $ imes$ 10 ²¹	\geq 1.7 $ imes$ 10 ²¹ [1]
2v	g.s.	= 2.62 × 10 ¹⁹	see slide 12
2ν	2 ₁ +(1294 keV)	\geq 0.9 $ imes$ 10 ²¹	\geq 2.3 × 10 ²¹ [3]
2ν	0 ₁ ⁺ (1757 keV)	\geq 1.0 $ imes$ 10 ²¹	\geq 2.0 × 10 ²¹ [3]
2ν	0 ₂ ⁺ (2027 keV)	\geq 1.1 $ imes$ 10 ²¹	\geq 2.0 × 10 ²¹ [3]
2ν	2 ₂ ⁺ (2112 keV)	\geq 2.3 \times 10 ²¹	\geq 1.7 \times 10 20 [2] (at 68% CL)
2ν	2 ₃ ⁺ (2225 keV)	\geq 2.5 \times 10 ²¹	\geq 1.0 \times 10 20 [2] (at 68% CL)

[1] F.A. Danevich et al., Phys. Rev. C 68 (2003) 035501

[2] A.S. Barabash, A.V. Kopylov, V.I. Cherehovsky, Phys. Lett. B 249 (1990)186

[3] A.Piepke et al. Nucl. Phys. A 577 (1994) 493

F.A. Danevich

Search for double beta decay of 116 Cd with enriched 116 CdWO₄ crystal scintillators

TAUP 2015, Sep 7, Turin

Conclusions

- The Aurora experiment to search for 2β decay processes in ¹¹⁶Cd with the help of enriched radiopure ¹¹⁶CdWO₄ scintillators is running at the Gran Sasso underground laboratory
- The most precise measurement of $2v2\beta$ decay of ¹¹⁶Cd: $T_{1/2} = [2.62 \pm 0.02(stat.) \pm 0.14(syst.)] \times 10^{19} \text{ yr}$
- The new limit is set for the $0v2\beta$ decay as $T_{1/2} \ge 1.9 \times 10^{23} \text{ yr}$ which corresponds to $\langle m_v \rangle \le (1.3 - 1.7) \text{ eV}$
- New improved limits are obtained for 2 β decay of ¹¹⁶Cd with emission of majorons and to the exited levels of ¹¹⁶Sn: $T_{1/2} \ge 10^{21} 10^{22} \text{ yr}$
- The experiment is in progress

Backup slides

Estimation of systematic errors

Conditions of the Fit:

- Variation of bounds for rad. contaminations
- Model of background
- Interval of fit

F.A. Danevich

• Quenching for β (non proportional light response) [1,2]

53 fits in (640-1700) - (2300-3900) keV

Source	Contribution ×10 ¹⁹ yr
Number of nuclei	0.002
Live time	≤ 0.002
Efficiency of PSD	0.012
Model of background, interval of fit	0.1
Simulation	0.025

[1] PRC 76(2007)064603 [2] NIMA 696(2012)144

18

Estimation of systematic error: Monte Carlo simulation

Search for double beta decay of ¹¹⁶Cd with enriched ¹¹⁶CdWO₄ crystal scintillators

F.A. Danevich

Response of the ¹¹⁶CdWO₄ detector to 2β processes in ¹¹⁶Cd simulated by EGS4

F.A. Danevich

Search for double beta decay of ¹¹⁶Cd with enriched ¹¹⁶CdWO₄ crystal scintillators

TAUP 2015, Sep 7, Turin