DAMA Collaboration & INR-Kyiv

http://people.roma2.infn.it/dama

Results and perspectives in ββ decay experiments by the DAMA-Kyiv Collaboration with HPGe

103° Congresso SIF, September 2017

DAMA: an observatory for rare processes @LNGS

DAMA/CRYS

DAMA/R&D DAMA/Ge

DAMA/LXe

DAMA/NaI

DAMA/LIBRA

http://people.roma2.infn.it/dama

Collaboration

Roma Tor Vergata, Roma La Sapienza, LNGS, IHEP/Beijing

+ by-products and small scale experiments (MoU): INR-Kyiv

+ in some studies on $\beta\beta$ decays (DST-MAE projects, inter-univ. Agreem.): IIT Ropar/Kharagpur, India

+ in some activites collaborators from

Ukraine	Kyiv National Taras Shevchenko University National Science Center Kharkiv Instit. of Physics and Technology; Institute for Scintillation Materials, Ukraine
Russia	Russian Chemistry-Technological University of D.I.Mendeleev Moscow Joint Institute for Nuclear Research, Dubna; Joint stock company NeoChem, Moscow Nikolaev Inst. of Inorganic Chemistry, Novosibirsk; Institute of Theoretical and Experimental Physics, Moscow
Australia	Department of Applied Physics, Curtin University, Perth
Finland	Dept. of Physics, University of Jyvaskyla, Jyvaskyla

Summary of searches for $\beta\beta$ decay modes in various isotopes (partial list)

DAMA/Ge and LNGS STELLA facility

Ge detectors used by DAMA in previous searches:

DAMA/Ge (GeBer)

- 244 cm³ n-type HPGe detector
- Thin Carbon window: 0.76 mm thickness

GeCris

- 465 cm³ p-type HPGe detector
- Thin Cu window: 1 mm thickness

GeMulti

- Four 225 cm³ p-type HPGe detectors mounted in one cryostat with a well in the center
- Thin Al window: 1.3 mm thickness

GeBEGe

- Broad Energy Ge detector (especially designed for low energy γ spectrometry)
- Thin Cu window: 1.5 mm thickness

DAMA results

- Search for ββ decays of many candidate isotopes (next slide)
- Search for ⁷Li solar axions (NPA806(2008)388, PLB711(2012)41)
- First observation of α decay of ¹⁹⁰Pt to the first excited level of ¹⁸⁶Os (PRC83(2011)034603)
- Qualification of many materials: e.g. CdWO₄, ZnWO₄(NIMA626-7(2011)31, NIMA615(2010)301), Li₆Eu(BO₃)₃ (NIMA572(2007)734), Li₂MoO₄ (NIMA607(2009)573), SrI₂(Eu) (NIMA670(2012)10), ⁷LiI(Eu) (NIMA704(2013)40)

Typical shield from environmental radioactivity

- 5-10 cm of OFHC copper
- 5 cm of low activity lead (< 3 Bq/kg of ²¹⁰Pb)
- 15-25 cm of lead
- 10 cm of borated polyethylene (GeBer)
- Air-tight PMMA box flushed with HP nitrogen

First or improved results for 2β decays of many isotopes

¹³⁶Ce $Q_{\beta\beta}$ =2378.55 keV; 2ε, εβ⁺, 2β⁺; ¹³⁸Ce $Q_{\beta\beta}$ =691 keV; 2ε

- > CeO₂ sample (627 g) in GeCris detector (2299 h) \Rightarrow T_{1/2} limits: 10¹⁷-10¹⁹ yr [Eur. Phys. J. A 53 (2017) 172]
- > CeO₂ sample (732 g) in GeCris detector (1900 h) \Rightarrow T_{1/2} limits: 10¹⁷-10¹⁸ yr [Nucl. Phys. A 930 (2014) 195]
- > CeCl₃ crystal (6.9 g) in DAMA/Ge detec. (1280 h) \Rightarrow T_{1/2} limits: (1÷6)10¹⁵ yr [Nucl. Phys. A 824 (2009) 101]

¹⁰⁶Cd $Q_{\beta\beta}$ =2775.39 keV; 2 ϵ (res 0 ν), $\epsilon\beta^+$, 2 β^+ [Phys. Rev. C 93 (2016) 045502]

> 106 CdWO₄ crystal scintillator (216 g) in GeMulti (13085 h) \Rightarrow T_{1/2} limits: 10²⁰-10²¹ yr

⁹⁶Ru Q_{ββ}=2714.51 keV; 2ε (res 0ν), εβ⁺, 2β⁺, ¹⁰⁴Ru Q_{ββ}=1301.2 keV; 2β⁻

- > Purified Ru samples in GeMulti det. (0.56kg×yr) \Rightarrow T_{1/2} limits: 10²⁰-10²¹ yr [Phys. Rev. C 87 (2013) 034607]
- > Ru sample (473 g) in GeCrys detector (158 h) \Rightarrow T_{1/2} limits: 10¹⁸-10¹⁹ yr [Eur. Phys. J. A 42 (2009) 171]

¹⁸⁴Os $Q_{\beta\beta}$ =1453.7 keV; 2 ϵ (res 0 ν), $\epsilon\beta^+$; ¹⁹²Os $Q_{\beta\beta}$ =412.4 keV; 2 β^- [Eur. Phys. J. A 49 (2013) 24]

> Os sample (173 g) in GeCris detector (2741 h) \Rightarrow T_{1/2} limits: 10¹⁶-10¹⁷ yr for ¹⁸⁴Os and 10¹⁹ yr for ¹⁹²Os

¹⁹⁰Pt $Q_{\beta\beta}$ =1383 keV; 2 ϵ (res 0 ν), $\epsilon\beta^+$; ¹⁹⁸Pt $Q_{\beta\beta}$ =1049 keV; 2 β^- [Eur. Phys. J. A 47 (2011) 91]

> Pt sample (42.5 g) in GeCris detector (1815 h) \Rightarrow T_{1/2} limits: 10¹⁴-10¹⁶ yr for ¹⁹⁰Pt and 10¹⁸ yr for ¹⁹⁸Pt

¹⁵⁶Dy Q_{ββ}=2005.95 keV; 2ε, εβ⁺; ¹⁵⁸Dy Q_{ββ}=282.7 keV; 2ε [Nucl. Phys. A 859 (2011) 126] > Dy₂O₃ sample (322 g) in DAMA/Ge det. (2512 h) ⇒ T_{1/2} limits: 10¹⁴-10¹⁶ yr

¹⁰⁰Mo $Q_{\beta\beta}$ =3035 keV; 2 β^{-1}

[Nucl. Phys. A 846 (2010) 143]

¹⁰⁰MoO₃ sample (1199 g) enriched in ¹⁰⁰Mo at 99.5% in GeMulti detector ⇒ observation of ¹⁰⁰Mo→¹⁰⁰Ru(0₁⁺) decay: $T_{1/2} = 6.9^{+1,0}_{-0,8}(stat) \pm 0.7(syst) \times 10^{20}$ yr

The best experimental sensitivities in the field for 2β decays with positron emission

Armonia

NPA846(2010)143

(meAsuReMent of twO-NeutrIno $\beta\beta$ decAy of ¹⁰⁰Mo to 0⁺₁ level of ¹⁰⁰Ru)

In addition to the transition to the g.s., the $2\beta 2\nu$ decay of ^{100}Mo was registered also for the transition to the first excited 0^{+}_{1} level of ^{100}Ru

- If O⁺₁ excited level of ¹⁰⁰Ru (E=1130 keV) populated
- \Rightarrow two γ quanta (591 keV + 540 keV) emitted in cascade

¹⁰⁰MoO₃ sample (mass =1199 g) enriched in ¹⁰⁰Mo at 99.5% installed in GeMulti setup

T _{1/2} measured in several experiments:	$T_{1/2}, 10^{20} ext{ yr}$	Year [Ref.]
Frejus UL (4800 m w.e.), HP Ge 100 cm ³ , 994 g of ¹⁰⁰ Mo (99.5%), 2298 h, only 1-d spectrum;	> 12	1992 [19]
Soudan mine (2090 m w.e.), HP Ge 114 cm ³ , 956 g of ¹⁰⁰ Mo (98.5%), 9970 h, 1-d spectrum;	$6.1^{+1.8}_{-1.1}$	1995 [11] ^a
Modane UL (4800 m w.e.), 4 HP Ge detectors (100, 120, 380, 400 cm ³), 17 different ¹⁰⁰ Mo samples (107–1005 g, 95.1–99.3%, 142–1599 h), sum of 1-d spectra;	$9.3^{+2.8}_{-1.7}$	1999 [14]
Modane UL (4800 m w.e.), NEMO-3 detector, 6914 g of ¹⁰⁰ Mo foils in 12 sectors (95.1–98.9%), 8024 h, individual energies of γ and e^- , tracks for e^- ;	$5.7^{+1.5}_{-1.2}$	2007 [15]
Ground level (10 m w.e.), 2 HP Ge detectors (300 cm ³) in coincidence, 1050 g of ¹⁰⁰ Mo (98.4%), 21720 h, coincidence spectrum;	$5.5^{+1.2}_{-0.9}$	2009 [16] ^b
Gran Sasso UL (3600 m w.e.), 4 HP Ge detectors (225 cm ³ each) in coincidence, 1199 g of ¹⁰⁰ MoO ₃ (99.5%), 18120 h, coincidence and 1-d spectra.	$6.9^{+1.2}_{-1.1}$	This work

Aim of the experiment: remeasurement of the Mo sample used before in the Frejus exp. (not in agreement with other results)

Armonia Results

NPA846(2010)143

2-dim energy spectrum analysis

Double coincidences when fixing the energy of one of the Ge detectors

Eight events detected (red)

$$T_{1/2} = 6.8^{+3.7}_{-1.8}$$
(stat.) × 10²⁰ yr

in agreement with the half life derived in 1-d analysis

1-dimensional energy spectrum analysis

Both peaks at 540 keV and 591 keV expected for $2\beta 2\nu$ decay ${}^{100}\text{Mo} \rightarrow {}^{100}\text{Ru}(0_1^+)$ are observed in the data collected with ${}^{100}\text{Mo}O_3$

In the background spectrum they are absent

Fit of peak @ 539.5 keV: E=539.4 \pm 0.2 keV; S₅₄₀ = 319 \pm 56 events Fit of peak @ 590.8 keV: E= 590.9 \pm 0.2 keV; S₅₉₁ = 278 \pm 53 events

$$T_{1/2} = 6.9^{+1.0}_{-0.8}$$
(stat.) ± 0.7 (syst.) $\times 10^{20}$ yr.

Most of systematic unc. due to calculation of the efficiencies

Search for ββ decay in ¹⁰⁶Cd with ¹⁰⁶CdWO₄ scintillator in coincidence with 4 HPGe (GeMulti)

¹⁰⁶Cd, a promising isotope:

- ✓ One of the six isotopes candidate for $2\beta^+$ decay
- ✓ $\delta = (1.25 \pm 0.06)\% \Rightarrow$ possible enrichment up to 100%
- ✓ $Q_{2\beta}$ = (2775.39±0.10) keV \Rightarrow 2β⁺, εβ⁺, 2ε modes possible
- ✓ Possible resonant 2ε0v captures to excited level of ¹⁰⁶Pd
- ✓ Theoretical $T_{1/2}$ favorable for some 2v modes (10²⁰ 10²² yr)

¹⁰⁶CdWO₄ crystal scintillator:

- ✓ Mass: 216 g, 66.4% enrichment in ¹⁰⁶Cd
- ✓ Good scintillation properties
- ✓ Active source approach (high detection efficiency)
- ✓ Low levels of internal contamination in (U, Th K)
- ✓ α/β discrimination capability

PbWO₄ light-guide (Ø40 × 83 mm)

Reduce PMT background (archael. lead: A(²¹⁰Pb)<0.3 mBq/kg)

¹⁰⁶CdWO₄ crystal scintillator in GeMulti: Results

Energy spectrum of ¹⁰⁶CdWO₄ detector in coincidence with 511 keV in HPGe (circles). Monte Carlo simulated distributions of 2β decay of ¹⁰⁶Cd excluded at 90% CL

- 1. In anticoincidence with the HPGe detectors (AC)
- 2. In coincidence with $E_{HPGe} > 200 \text{ keV}$ (CC >200)
- 3. In coincidence with $E_{HPGe} = 511 \text{ keV}$ (CC 511)
- 4. In coincidence with $E_{HPGe} = 1160 \text{ keV}$ (CC 1160)

- > New limits on 2 ϵ , $\epsilon\beta^+$, $2\beta^+$ processes on the level of $T_{1/2} > 10^{20} 10^{21}$ yr
- The half-life limit on the εβ⁺2ν decay, T_{1/2} > 1.1×10²¹ yr, reached the region of theoretical predictions
- ► For 2 ϵ 0v resonant captures: $T_{1/2}$ > (8.5 × 10²⁰ 1.4 × 10²¹) yr

New ¹⁰⁶CdWO₄ experiment in DAMA/Crys set-up

- New experiment with ¹⁰⁶CdWO₄ in (anti)coincidence with two large CdWO₄ scintillators mounted in DAMA/Crys set-up @ LNGS
- 2) High efficiency
- 3) Experiment in data taking since May 2016

New limits on $2\beta^+$ decay of ¹³⁶Ce and ¹³⁸Ce with deeply purified cerium sample

2315.3

2222.7

2141.3

2128.8

2080.0

1579.0

1551.0

818.5

 $Q_{20} = 2378.55(27)$ ke

Ce purification performed by the liquid-liquid extraction method

improved 2 β sensitivity \approx one order of magnitude

 \Rightarrow thorium concentration reduced by a factor ≈ 60

No peculiarities in CeO₂ spectrum can be ascribed to 2β decay of ¹³⁶Ce or ¹³⁸Ce \Rightarrow New improved half-life limits: $T_{1/2} > 10^{17} - 10^{19} \text{ yr}$

¹³⁶₅₆Ba

Eur. Phys. J. A 53 (2017) 172

	Chain	in Nuclide	Activity (mBq kg^{-1})		
			before	after 1st	after 2nd
			purification	[31] purification	[31] purification
		$^{40}\mathrm{K}$	77(28)	≤ 9	≤ 4
		$^{137}\mathrm{Cs}$	≤ 3	≤ 2	0.4 ± 0.2
		^{138}La	1000 h	≤ 0.7	≤ 0.6
_		$^{139}\mathrm{Ce}$	-	6 ± 1	1.4 ± 0.3
		$^{152}\mathrm{Eu}$		≤ 0.5	≤ 0.2
7		$^{154}\mathrm{Eu}$		≤ 0.9	≤ 0.08
		¹⁷⁶ Lu	-	≤ 0.5	0.4 ± 0.1
	$^{232}\mathrm{Th}$	228 Ra	850 ± 50	53 ± 3	30.4 ± 0.7
		$^{228}\mathrm{Th}$	620 ± 30	573 ± 17	9.8 ± 0.5
	$^{235}\mathrm{U}$	$^{235}\mathrm{U}$	38 ± 10	≤ 1.8	≤ 0.4
		231 Pa		≤ 24	≤ 0.4
		$^{227}\mathrm{Ac}$		≤ 3	≤ 1.4
	$^{238}\mathrm{U}$	$^{238}\mathrm{U}$	≤ 870	≤ 40	≤ 12
		226 Ra	11 ± 3	≤ 1.5	≤ 0.3

NB:

Cerium purification is also motivated in the light of radiopure crystal scintillators development; In fact, Ce is used

- ✓ to develop Ce-containing crystal scintillators (e.g., CeF₃, CeCl₃)
- \checkmark as a dopant in inorganic scintillators as Gd₂SiO₅(Ce), YAlO₃(Ce), LaBr₃(Ce)

Running and future experiments

0+ 8×10¹⁸ y (1-) 2.68 h

150Nd

150Pm

150Sm

- Experiment running since February 2015 with deeply purified Nd_2O_3 sample (2381) g) in GeMulti detector to investigate 2 β decay of ¹⁵⁰Nd to excited levels of ¹⁵⁰Sm:
 - \Rightarrow Background rate in the region of expected peaks (334.0 keV and 406.5 keV) ≈ 2 counts/keV/d
 - \Rightarrow Expected T_{1/2} sensitivity after 500 days of measurements: 1.3×10²⁰ yr (90%CL)

		Q _{2β} =	3368			
Improvement of Nd ₂ O ₃ radioactive contamination						
Contamination	Before [1]	Present				
⁴⁰ K	46	< 4				
²¹⁴ Bi (²²⁶ Ra)	1.1	<0.4				
²²⁸ Ac (²²⁸ Ra)	0.9	<0.4				

- New experiment to search for 2 β of osmium (and α decay of osmium) to excited level of daughter nuclei) in progress with BEGe detector:
 - \Rightarrow Detection efficiency significantly improved by cutting the osmium roads into thin (0.8-1 mm) plates and by using the **BEGe detector**
- Purification of Er, Yb, and Sm is in progress for experiments to search for resonant $2\varepsilon 0v$ processes in these nuclei

Conclusions

Many and competitive results have been obtained by the DAMA-Kyiv collab. in the search for $\beta\beta$ decays with HPGe detectors @ the STELLA facility of LNGS:

- ✓ First or improved limits on the half-lives of double beta decays of ⁹⁶Ru, ¹⁰⁴Ru, ¹⁰⁶Cd, ¹¹²Sn, ¹²⁴Sn, ¹³⁶Ce, ¹³⁸Ce, ¹⁵⁶Dy, ¹⁵⁸Dy, ¹⁸⁴Os, ¹⁹²Os, ¹⁹⁰Pt and ¹⁹⁸Pt
- The best experimental sensitivities in the field for 2β decays with positron emission (useful to distinguish the mechanism of neutrinoless 2β decay)
- \checkmark Possible resonant 2:0v processes investigated in several candidate isotopes
- New observation of the 2β2v decay of ¹⁰⁰Mo to the first excited 0⁺₁ level of ¹⁰⁰Ru with the coincidence technique in the ARMONIA experiment
- ✓ New and competitive limits on 2ϵ , $\epsilon\beta^+$, $2\beta^+$ processes of ${}^{106}Cd$ with a ${}^{106}CdWO_4$ detector in coincidence with 4 HPGe detetors ($T_{1/2} > 10^{20}-10^{21}$ yr, reached the region of theoretical predictions for the $\epsilon\beta^+2\nu$ decay)