

+ INR Kiev

Primi risultati sperimentali sullo studio di decadimenti ββ in ¹⁰⁶Cd con un cristallo scintillatore di ¹⁰⁶CdWO₄ in coincidenza con quattro rivelatori HP-Ge

100° Congresso SIF Pisa, 26 Settembre 2014 F. Cappella INFN - LNGS

Double beta decay of ¹⁰⁶Cd

¹⁰⁶Cd is an attractive candidate:

- $Q_{2\beta}$ = (2775.39 ± 0.10) keV [one of only six 2 β ⁺ candidate nuclides]
- Quite high natural abundance $\delta = 1.25\%$
- Possibility of resonant 2°Ov captures to excited levels of daughter ¹⁰⁶Pd
- Quite optimistic theoretical $T_{1/2}$:

 $2\varepsilon 2v$ (2.0-2.6)×10²⁰ yr [1] 4.8×10²¹ yr [2] εβ+2v (1.4-1.6) ×10²¹ yr [1] 2.9×10²² yr [2]

[1] S. Stoica et al., EPJA 17 (2003) 529 [2] J. Suhonen, PRC 86 (2012) 024301

Our previous measurements with ¹⁰⁶CdWO₄ crystal scintillator

P. Belli et al., PRC 85 (2012) 044610

Excellent optical and scintillation properties thanks to special R&D to purify raw materials and Low-Thermal-Gradient Czochralski technique to grow the crystal [P. Belli et al., NIMA 615 (2010) 301]

¹⁰⁶Cd enrichment: 66% FWHM: 10% at 662 keV

 $T_{1/2}$ limits for different modes: ~ 10²⁰-10²¹ yr (mostly the best limits)

$^{106}CdWO_4$ in the GeMulti setup with 4 HPGe detectors

STELLA facilities @ LNGS

To suppress radioactivity from PMT: PbWO₄ light-guide

from archeological lead [a(²¹⁰Pb)×0.3mBq/kg] [F.A. Danevich et al., NIMA 603 (2009) 328]

- ¹⁰⁶CdWO4 crystal scintillator, 215 g mass
- ✓ PbWO₄ crystal light guide (∅40×83 mm)
- ✓ 4 HPGe, ~ 225 cm³ each, in one cryostat
- ✓ ¹⁰⁶CdWO₄ in coincidence/anticoincid. with HPGe
- ✓ Detection efficiency ~ 5 7%
- ✓ Estimated sensitivity to two neutrino $\epsilon\beta^+$ and $2\beta^+$ in ¹⁰⁶Cd: T_{1/2} ~ 10²⁰ – 10²¹ yr

$^{106}CdWO_4$ in the GeMulti setup with 4 HPGe detectors

DAQ:

- time and energy for each HPGe;
- shape of signal for ¹⁰⁶CdWO₄
 (>0.6 MeV to exclude ^{113m}Cd β decay)
- different triggers (c/ac)

Calibration: ²²Na, ⁶⁰Co, ¹³⁷Cs, ²²⁸Th

 106 CdWO₄ – FWHM = (20.4×E_y)^{1/2}

²²Na: no coincidence with HPGe and coincidence with 511 keV in HPGe

Energy spectrum of the $\beta(\gamma)$ events

Mean-time PSD method used to discriminate $\beta(\gamma)$ events from α events due to internal U/Th contamination of the crystal

Coincidences ¹⁰⁶**CdWO**₄ - **HPGe**

Counting rate substantially suppressed by coincidence with 511 keV in HPGe detector

In agreement with the Monte Carlo simulation:

The counting rate of the coincidence data is in agreement with the calculated background using the parameters of the fit of the ¹⁰⁶CdWO₄ detector background without coincidence

Data analysis

Simulation of 2 β processes in ^{106}Cd

No peculiarities in the data of 106 CdWO₄ detector could be ascribed to the 2 β processes in 106 Cd

 $T_{1/2}$ limits on 2β processes in ¹⁰⁶Cd

$$\lim T_{1/2} = \frac{N \times \eta \times t \times \ln 2}{\lim S}$$

- *N*: number of ¹⁰⁶Cd nuclei (2.42×10²³)
- η : detection efficiency
- t: time of measurements (3233 h)
- lim S: number of excluded events

lim S

Comparison between the measured number of events in the background spectrum and the expected background, estimated by using the result of the fit of the data accumulated by the ¹⁰⁶CdWO₄ detector without coincidence

Results

Example for $2\nu\epsilon\beta^+$ decay to g.s.:

- Experimental number of coincidence events in 500–1200 keV = 13 counts
- Expected events from background model = 17.6 counts
- \Rightarrow Events upper limits (Feldman and Cousins): lim S = 3.7 counts (90% C.L.)
- $2\nu\epsilon\beta^+$ detection efficiency = 7.6%; energy interval = 67.0%, cut efficiency = 99% $\Rightarrow \eta = 5.0\%$
- \Rightarrow $T_{1/2}$ > 8.4×10^{20} yr (90% C.L.)

Decay channel, level of ¹⁰⁶ Pd (keV)	<i>T</i> _{1/2} limit (yr) at 90% C.L.	
	Present work	Previous limit
$2v2\varepsilon, 0_1^+ 1134$	$\geq 3.7 \times 10^{20}$	$\geq 1.7 \times 10^{20}$ [1]
0ν2ε, g.s.	$\geq 2.4 \times 10^{19}$	$\geq 1.0 \times 10^{21}$ [1]
$2\nu\epsilon\beta^+$, g.s.	$\geq 8.4 \times 10^{20}$	\geq 4.1 × 10 ²⁰ [2]
$2\nu\epsilon\beta^+, 0_1^+ 1134$	$\geq 9.4 \times 10^{20}$	$\geq 3.7 \times 10^{20}$ [1]
$0\nu\epsilon\beta^+, g.s.$	$\geq 4.3 \times 10^{20}$	$\geq 2.2 \times 10^{21}$ [1]
$2\nu 2\beta^+$, g.s.	$\geq 2.5 \times 10^{21}$	\geq 4.3 × 10 ²⁰ [1]
$0\nu 2\beta^+$, g.s.	$\geq 1.0 \times 10^{21}$	$\geq 1.2 \times 10^{21} [1]$

Preliminary T_{1/2} limits

P. Belli et al., PRC 85 (2012) 044610
 P. Belli et al., APP 10 (1999) 115

Excluded distributions of 2β processes (90% CL)

Experimental spectrum ¹⁰⁶CdWO₄ + HPGe

Conclusions

New search for 2β decay processes in ¹⁰⁶Cd with the help of low background ¹⁰⁶CdWO₄ scintillation detector (215 g) in coincidence with four HPGe (225 cm³ each) is in progress at the STELLA facility of LNGS

After 3233 *h* of measurements preliminary $T_{1/2}$ limits on 2 β processes in ¹⁰⁶Cd are achieved on the level of $10^{19} - 10^{21}$ yr

Some of them are better than those obtained on the previous stage of the experiment and close to theoretical expectations

An increased statistics and the construction of a more precise model of the background could allow us to improve the sensitivity of the experiment to the level of theoretical predictions for $2\nu\epsilon\beta^+$ channel

Data collection is in progress