Investigation of double β decay of cadmium by using isotopically enriched cadmium tungstate crystal scintillators ¹⁰⁶CdWO₄ and ¹¹⁶CdWO₄

O.G. Polishchuk

Institute for Nuclear Research, Kyiv, Ukraine

Over 75 years of experimental searches $2v2\beta$ decay was observed only for 11 nuclei in the direct, geochemical and radiochemical experiments (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ¹³⁶Xe and ²³⁸U) with half-lives in the range ~ 10¹⁸– 10²⁴ years

 2β decay processes with decreasing nuclear charge and neutrinoless 2β decay has not yet been observed

Detection 0v2 β decay allow to test: nature of neutrino (Dirac or Majorana particle); existence right-handed current in the weak interaction; scale of the neutrino mass and hierarchy, conservation of lepton charge; existence of Majorons; theory of supersymmetry

 γ_1

(A, Z+2)

¹¹⁶Cd

106 C d

- good scintillation properties
- low levels of internal contamination
- particle discrimination ability
- (↓ background)

CdWO₄ CdWO₄ were successfully used in low-energy experiments on search for 2β decay of Cd and W [2], as well as for the study of rare α [3] and β [4] decays

[2] PRC 68 (2003) 035501, EPJA 36 (2008) 167, ZPA 355 (1996) 433 [3] PRC 67 (2003) 014310 3 [4] PAN 59 (1996) 1, PRC 76 (2007) 064603

¹¹⁶Cd, new stage of measurements

2 crystals of $^{116}CdWO_4$, (82% of ^{116}Cd), m_{tot}=1175 g in DAMA R&D

Time of measurements ~ 2744 h (the last stage of the experiment started from 2011)

Upgrade of the set-up have been made in March 2014. As a result radioactive background reduced to ≈ 0.12 counts/ (yr×kg×keV) within region of interest 2.7–2.9 MeV

Pulse shape discrimination (PSD)

Energy (keV)

Shape Indicator

Energy spectra of $\gamma(\beta)$ events over 2744 h

6

Selection of ²¹²Bi-²¹²Po events by front-edge analysis

Time-amplitude analysis

¹¹⁶CdWO₄ Activity ²²⁸Th, μBq/kg
No.1 17(3)
No.2 36(5)

Response of the ¹¹⁶CdWO₄ detector to 2β processes in ¹¹⁶Cd simulated by EGS4

 $2\gamma 2\beta$ g.s. \rightarrow g.s.

 $2\gamma 2\beta$ g.s. \rightarrow 1294

 $0\gamma 2M1 \text{ g.s.} \rightarrow \text{g.s}$

Possibility to improve the radiopurity of ¹¹⁶CdWO₄ by recrystallization

*) Measured recently in the DAMA-Crys R&D set-up

We expect to reduce K, Th, U and Ra contamination by recrystallization \Rightarrow reduction of the background by a factor 2-5 \Rightarrow advancement the sensitivity up to ~ 10²⁴ yr

¹⁰⁶CdWO₄ and ^{arch}PbWO₄

Purification ¹⁰⁶Cd: Institute of Physics and Technology (Kharkiv) Crystal growth: NIIC Novosibirsk Isotono Boforo

	Isotope	Before, ppm	After, ppm
	K	11	0.04
	Ni	0.6	<0.2
	Cu	5	0.5
CM 1 2 Mining	Fe	1.3	0.4
¹⁰⁶ CdWO₄ 231 g 66% ¹⁰⁶ CdWO₄,215 g [1]	Mg	12	<0.05
A	Mn	0.1	0.1
	Cr	9	<0.1
B	Pb	270	<0.3
To suppress the radioactive components from the photomultiplier, PbWO ₄ light-guide (from archaeological lead A (210 Pb) <0.3 mBq/kg [2]) were used			

Purification Pb: Institute of Physics and Technology (Kharkiv) Crystal growth: Institute of Scintillation Materials (Kharkiv)

11

[1] P. Belli et al., PRC 85 (2012) 044610 [2] NIMA 603 (2009) 328; Inorganic Mater. 47 (2011) 645.

¹⁰⁶CdWO₄ in GeMulti set-up

¹⁰⁶CdWO₄ crystal (215 g, 66% ¹⁰⁶Cd) is viewed by low background photomultiplier through a PbWO₄ crystal light-guide made from deeply purified archaeological lead. The detector operates in coincidence with the 4 low background HPGe detectors

Time of measurements > 10 000 h

Energy (keV)

ProdRun 1-95, 8826.2 h, 106CdWO4, GeMulti

$T_{1/2}$ limits on 2 β processes in ¹⁰⁶Cd

Background energy spectrum of the ¹⁰⁶CdWO₄ detector in coincidence with 511 keV annihilation γ quanta in the HPGe detectors accumulated over 3233 h (circles) together with the simulated distributions of double beta processes in ¹⁰⁶Cd excluded at 90% C.L.

*New T*_{1/2} limits for different modes: 10²⁰-10²¹ yr

Conclusions

- Experiments to search for double beta decay processes in ^{106,116}Cd with the help of enriched in ^{106,116}Cd (to 66% and 82%, respectively) low background ^{106,116}CdWO₄ scintillation detectors are in progress at the Gran Sasso underground laboratory of INFN (Italy).
- Spectrometric properties of detectors (energy and time resolution), the methods of separation of signals from the α -particles and γ quanta (β -particles) were developed
- Sensitivity of the experiment for different channels of 2β decay for ¹¹⁶Cd is 10²⁰-10²³ years. It is expected that the 2ν-mode of 2β decay of ¹¹⁶Cd will be measured with an accuracy better than 10%.
- ¹⁰⁶CdWO₄ scintillator was successfully cleaned from different impurities (including ²⁰⁷Bi). The detector is running in coincidence with four HPGe detectors to search for 2β processes in ¹⁰⁶Cd.
- Deeply purified lead tungstate (PbWO₄) crystal light-guide from low-radioactive archaeological lead (that is free from ²¹⁰Pb) with good optical properties is used as light-guide to supress gamma quanta from contamination of the PMT.
- Sensitivity of the experiment for different channels of 2β decay for ¹⁰⁶Cd is on the level of 10²⁰-10²¹ years.
- Data taking and analysis of both experiments are in progress.

Plans

 Recrystallization of the crystals would reduce contamination of CdWO₄ from Th, U, Ra, K (due to the very strong segregation of these elements)

• Production of ¹⁰⁶CdWO₄ depleted with ¹¹³Cd to remove ^{113m}Cd

Thank you for attention!