Search for double beta processes in 106 Cd with enriched 106 CdWO₄ crystal scintillator in coincidence with four crystals HPGe detector

<u>F.A.Danevich</u>^a, P.Belli ^{b,c}, R.Bernabei ^{b,c}, V.B.Brudanin ^d, F.Cappella^e, V.Caracciolo ^e, R.Cerulli ^e, D.M.Chernyak ^a, S.D'Angelo^{b,c,†}, A.Incicchitti ^{f,g}, M.Laubenstein ^e, V.M.Mokina ^a, D.V.Poda^{a,h}, O.G.Polischuk ^{a,f}, V.I.Tretyak ^{a,f} I.A.Tupitsynaⁱ

^a Institute for Nuclear Research, Kyiv, Ukraine

^b Dipartimento di Fisica, Universita di Roma "Tor Vergata", Rome, Italy

^c INFN sezione Roma "Tor Vergata", Rome, Italy

^d Joint Institute for Nuclear Research, Dubna, Russia

^e INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy

^f INFN, sezione di Roma "La Sapienza", Rome, Italy

^g Dipartimento di Fisica, Universita di Roma "La Sapienza", Rome, Italy

^h Centre de Sciences Nucleaires et de Sciences de la Matiere, Orsay, France

ⁱ Institute of Scintillation Materials, Kharkiv, Ukraine

+ deceased

In this presentation

- Introduction
- Experiment
 - ¹⁰⁶CdWO₄ crystal scintillator
 - PbWO₄ light guide from archaeological lead
 - ¹⁰⁶CdWO₄ in four crystals HPGe set-up
- Results
- Plans to improve the sensitivity
- Conclusions

Double beta decay of ¹⁰⁶Cd

 $Q_{2\beta}$ = 2775.39(10) keV [1] δ = 1.25(6)% [2]

- Possibility to refine mechanism of 0v2β⁻ decay (neutrino mass or right handed currents contribution). Enhancement of 0vεβ⁺ mode is expected for the right handed current mechanism of decay [3]
- Resonant $0v2\epsilon$ transitions

Characteristics of possible resonant $0\nu2\epsilon$ in ^{106}Cd

Decay, level <i>E</i> _{exc} (keV)	Δ (<i>Q</i> - <i>E</i> _{exc}) (keV)
$2K \rightarrow 2717.59(21)$	9.1 ± 0.2
$KL_1 \rightarrow 4^+ 2741.0(5)$	6.4 ± 0.5
$KL_3 \rightarrow 2,3^- 2748.2(4)$	-0.3 ± 0.4

[1] M. Wang et al., The AME2012 atomic mass evaluation, Chin. Phys. C 36 (2012) 1603 [2] M. Berglund, M.E. Wieser, Isotopic compositions of the elements 2009 (IUPAC Technical Report), Pure Appl. Chem. 83 (2011) 397 [3] M. Hirsch et al., Nuclear structure calculation of $\beta^+\beta^+$, β^+EC and EC/EC decay matrix elements, Z. Phys. A 347 (1994) 151

¹⁰⁶CdWO₄ crystal scintillator

 106 CdWO₄ crystal 231 g δ (106 Cd) = 66% yield of crystal = 87%

 106 CdWO₄ scintillator 216 g The total irrecoverable losses of 106 Cd $\approx 2\%$

The excellent optical and scintillation properties of the crystal were obtained thanks to the deep purification of ¹⁰⁶Cd and W, and the advantage of the low-thermal-gradient Czochralski technique to grow the crystal

[1] P. Belli et al., Development of enriched ¹⁰⁶CdWO₄ crystal scintillators to search for double β decay processes in ¹⁰⁶Cd, NIMA 615 (2010) 301

PbWO₄ light guide from archaeological lead

¹⁰⁶CdWO₄ detector

[1] F.A. Danevich et al., Ancient Greek lead findings in Ukraine, NIMA 603 (2009) 328
[2] R. S. Boiko et al., Ultrapurification of Archaeological Lead, Inorganic Materials 47 (2011) 645
[3] G.P. Kovtun et al., Development and properties of cadmium and lead tungstate low-background scintillators for double beta decay experiments, Nucl. Phys. Atom. Energy 15 (2014) 92

Experimental set-up

Experimental set-up. The detector was surrounded by layers of radiopure copper, lead, sealed in PMMA air tight box flushed by nitrogen to remove radon

Scheme of the electronic chain: (PA) preamplifiers; (FAN IN/OUT) linear FAN-IN/FAN-OUT; (SST-09) triggers unit for cadmium tungstate scintillation signals; (Pixie-4) four-channel all digital spectrometers; (PC) computer.

Calibration and Monte Carlo simulation γ sources

The energy scale, energy and time resolution were measured with ²²Na, ⁶⁰Co, ¹³⁷Cs and ²²⁸Th γ sources

Distribution of the ¹⁰⁶CdWO₄ detector pulses start positions relative to the HPGe signals with the energy 511 keV accumulated with ²²Na source

Energy spectra of ²²Na, ¹³⁷Cs and ²²⁸Th γ sources: with no coincidence (black), and in coincidence with energy 511 keV in the HPGe detector (red). The data simulated using the EGS4 Monte Carlo code are drawn by solid lines.

7

FWHM = $\sqrt{(20.4 \times E_{\gamma})}$ where FWHM and E_{γ} are given in keV

Monte Carlo simulation 2 ϵ , $\epsilon\beta^+$, $2\beta^+$ processes in ¹⁰⁶Cd

The response functions of the 106 CdWO₄ detector to the 2 β processes in 106 Cd were simulated with the help of the EGS4 code

Simulated response functions of $^{106}CdWO_4$ detector to $2\epsilon, \epsilon\beta^+$, and $2\beta^+$ processes in ^{106}Cd without coincidence (black) and in coincidence with annihilation γ quanta in the HPGe detector (red).

8

With ¹⁰⁶CdWO₄ crystal scintillator one can distinguish the neutrinoless and two neutrino modes of the 2 ϵ , $\epsilon\beta^+$ and 2 β^+ processes

Internal contamination of ¹⁰⁶CdWO₄ energy spectra and pulse-shape discrimination

Energy spectrum measured with the 106 CdWO₄ scintillator over 283 h in the low-background setup [1]. Beta active 113m Cd with activity 116(4) Bq/kg dominates at an energy of < 0.65 MeV

Mean time versus the energy accumulated over 571 h. The total α activity of U/Th in ¹⁰⁶CdWO₄ crystal is 2.1(2) mBq/kg.

[1] P. Belli et al., Search for double- β decay processes in ¹⁰⁶Cd with the help of a ¹⁰⁶CdWO₄ crystal scintillator, PRC 85 (2012) 044610

Internal contamination of ¹⁰⁶CdWO₄ time-amplitude analysis

Energy and time spectra of ²²⁸Th daughters decays selected by time-amplitude analysis. ²²⁸Th activity is 0.042(2) mBq/kg

Radioactive contamination of ¹⁰⁶CdWO₄ crystal scintillator [1, 2]

Chain	Nuclide	Activity (mBq/kg) *
²³² Th	²³² Th	≤ 0.07
	²²⁸ Th	0.042(4)
²³⁸ U	²³⁸ U	≤ 0.6
	²²⁶ Ra	0.012(3)
	⁴⁰ K	≤ 1.4
	^{113m} Cd	116(4) × 10 ³

*Reference date: November 2009

 [1] D.V. Poda et al., CdWO₄ crystal scintillators from enriched isotopes for double betadecay experiments, Radiation Measurements 56 (2013) 66
 [2] F.A.Danevich et al., Development of radiopure cadmium tungstate crystal scintillators from enriched ¹⁰⁶Cd and ¹¹⁶Cd to search for double beta decay, AIP Conf. Proc. 1549 (2013) 201

¹⁰⁶CdWO₄ energy spectra in (anti) coincidence with HPGe detectors

Energy spectra measured over 13085 h by 106 CdWO₄ detectors:

- in anticoincidence with the HPGe detectors (AC);
- in coincidence with HPGe when energy release in at least one of the HPGe detectors is E(HPGe) > 50 keV (CC Eγ>50 keV);
- in coincidence with E(HPGe) = 511 keV (CC 511)

All the spectra content 95% of $\gamma(\beta)$ events selected by the pulse-shape analysis

11

No effect of 2β decay of ¹⁰⁶Cd observed. Limits on half-lives were set by choosing the data with a higher ratio of the detection efficiency to the background counting rate (in some cases also HPGe spectra were used)

$^{106}\text{CdWO}_4$ in anticoincidence with HPGe

Energy spectrum of 95% of $\gamma(\beta)$ events selected from the data accumulated over 13085 h (points) in anticoincidence with HPGe together with the background model (blue continuous line). The main components of the background are shown: the distributions of internal K, Th and U, $2\nu 2\beta$ decay of ¹¹⁶Cd and the contribution from the external γ quanta from K, U and Th contamination of the set-up in these experimental conditions. The energy spectrum of the $2\nu 2\epsilon$ decay of ¹⁰⁶Cd to the 0_1^+ 1134 keV level of ¹⁰⁶Pd excluded at 90% CL is shown by red solid histogram.

¹⁰⁶CdWO₄ in coincidence with *E*(HPGe) > 50 keV

Energy spectrum of 95% of $\gamma(\beta)$ events selected from the data accumulated over 13085 h (points) in coincidence with event(s) in at least one of the HPGe detectors with energy > 50 keV. The background model is shown by the blue continuous line. The background is mainly due to the external γ quanta of the K, U and Th contamination of the set-up. The energy spectrum of the $0\nu\epsilon\beta^+$ decay of ¹⁰⁶Cd to the ground level of ¹⁰⁶Pd with the half-life 2.2×10²¹ yr excluded at 90% CL is shown by red solid histogram.

F.A. Danevich Search for double beta processes in ¹⁰⁶Cd with enriched ¹⁰⁶CdWO₄ crystal scintillator... MEDEX'15, June 10, 2015, Prague

¹⁰⁶CdWO₄ in coincidence with 511 keV in HPGe

Measured background in the energy interval 0 - 4 MeV is 176 counts.

Model of background built from the fit of the anticoincidence spectra gives 170 counts.

For example, 51 counts in the energy interval 550-1300 keV (68% of the $2\nu\epsilon\beta^+$ spectra, detection efficiency is 7.59%). Model of BG gives 58.3 counts $\Rightarrow \lim S =$ 6.4 counts [1] $\Rightarrow T_{1/2} > 1.9 \times 10^{21}$ yr

14

The energy spectrum of the ¹⁰⁶CdWO₄ detector accumulated over 13085 h in coincidence with 511 keV annihilation γ quanta in at least one of the HPGe detectors (circles). The Monte Carlo simulated distributions for different modes of 2ν and 0ν 2 ϵ , $\epsilon\beta^+$ 2 β^+ decays excluded at 90% CL are shown.

[1] G.J. Feldman, R.D. Cousins, Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873

HPGe spectrum

Energy spectrum measured over 13085 h by the four HPGe detectors with the 106 CdWO₄ detector installed (red histogram) together with background accumulated over 4102 h (blue) (the energies of the γ quanta are in keV)

Using the HPGe data to search for 2β decay of 106 Cd resonant *KL*₃ $0v2\varepsilon$ transition to 2,3⁺ 2748 keV excited level of 106 Pd

Sum energy spectrum accumulated over 13085 h by the four HPGe detectors. The expected 2236 keV peak of the resonant $0vKL_3$ capture of 106 Cd to the 2,3⁺ 2748 keV excited level of 106 Pd with the half-life 2.5×10^{20} yr (excluded at 90% CL, limS = 6 counts) is shown by the red solid histogram.

Limits on 2 ϵ , $\epsilon\beta^+$, 2 β^+ processes in ¹⁰⁶Cd

Decay, level of ¹⁰⁶ Pd	<i>T</i> _{1/2} (yr) at 90% C.L.			
(keV)	Present work	Previous limit		
$2v2\varepsilon$, 0^+_11134	≥ 3.0 ×10 ²⁰ (AC)	\geq 1.7×10 ²⁰ [1]		
0v2ε, g.s.	\geq 2.7×10 ²⁰ (AC)	\geq 1.0×10 ²¹ [1]		
2 νεβ+, g.s.	≥ 1.9 × 10 ²¹ (CC 511)	\geq 4.1×10 ²⁰ [2]		
2νεβ ⁺ , 0 [†] 134	≥ 1.4 × 10 ²¹ (CC 511)	\geq 3.7×10 ²⁰ [1]		
$0\nu\epsilon\beta^+$, g.s.	$\geq 1.6{\times}10^{21}~$ (CC Ey>50 keV)	\geq 2.2×10 ²¹ [1]		
$2\nu 2\beta^+$, g.s.	≥ 5.5 × 10 ²¹ (CC 511)	\geq 4.3×10 ²⁰ [1]		
$0\nu 2\beta^+$, g.s.	≥ 2.2 × 10 ²¹ (CC 511)	\geq 1.2×10 ²¹ [1]		
0v2 <i>K</i> , 2718	≥ 8.3 × 10 ²⁰ (CC 511)	\geq 4.3×10 ²⁰ [1]		
$0vKL_1$, 4 ⁺ 2741	$\geq 5.0 \times 10^{20}$ (HPGe)	$\geq 9.5 \times 10^{20}$ [1]		
0v <i>KL</i> ₃ , 2,3 [−] 2748	≥ 8.7 × 10 ²⁰ (HPGe)	\geq 4.3×10 ²⁰ [1]		

Limits on the level of $T_{1/2} \sim 10^{19} \cdot 10^{21}$ yr were also set on the 2 β processes to the excited levels 512, 1128, 1134, 1562, 1706, 2001, 2278 keV of ¹⁰⁶Pd

[1] P. Belli et al., Search for double- β decay processes in ¹⁰⁶Cd with the help of a ¹⁰⁶CdWO₄ crystal scintillator, Phys. Rev. C 85, 044610 (2012) [2] P. Belli et al., New limits on 2 β^+ decay processes in ¹⁰⁶Cd, Astropart. Phys. 10 (1999) 115

F.A. Danevich Search for double beta processes in ¹⁰⁶Cd with enriched ¹⁰⁶CdWO₄ crystal scintillator... MEDEX'15, June 10, 2015, Prague

Plans to improve the sensitivity

coincidence with two CdWO₄ detectors in close geometry

Event of the $2\nu\epsilon\beta^+$ decay	Efficiency	Background 200-1100 keV over 1 yr	Ratio efficiency/ sqrt(BG)
106 CdWO ₄ & 511 in at least on of the four HPGe	6.00%	76 counts	0.69
¹⁰⁶ CdWO ₄ & CWO1 (511) & CWO2 (511)	3.52%	15.7 counts	0.89

Conclusions

- 1. ¹⁰⁶Cd is one of the most promising isotopes to search for double beta plus processes. In addition:
 - possibility to decide whether the $0\nu 2\beta^2$ decay (if observed) is dominated by the mass mechanism or by right-handed current interaction
 - possible resonant $0v2\epsilon$ transitions
- Enriched ¹⁰⁶CdWO₄ crystal scintillator has been developed: excellent quality, high crystal yield and low losses, high radiopurity (only problem is ^{113m}Cd due to contamination of the isotopically enriched ¹⁰⁶Cd)
- Use of PbWO₄ light guide from archaeological lead allows constructing a small size low background scintillation detector to be installed inside the four crystal HPGe set-up
- 4. Detector based on ¹⁰⁶CdWO₄ crystal scintillator distinguishes the 0v and 2v modes of the 2 ϵ , $\epsilon\beta^+$ and $2\beta^+$ processes
- 5. New limits on 2 ϵ , $\epsilon\beta^+$, 2 β^+ processes in ¹⁰⁶Cd were set on the level of $T_{1/2}$ >10²⁰ 10²¹ yr
- 6. The half-life limit on the two neutrino electron capture with positron emission, $\lim T \frac{2\nu\varepsilon\beta^+}{1/2} = 1.9 \times 10^{21}$ yr, reached the region of theoretical predictions
- 7. Advancement of the experimental sensitivity is in progress using two CdWO₄ scintillation detectors in close geometry