Investigation of double beta decay of ¹¹⁶Cd with the help of enriched ¹¹⁶CdWO₄ crystal scintillators

<u>O.G. Polischuk ^{a,b}</u>, A.S. Barabash ^c, P. Belli ^{d,e}, R. Bernabei ^{d,e}, F. Cappella ^f, V. Caracciolo ^f, R. Cerulli ^f, D.M. Chernyak ^a, F.A. Danevich ^a, S. d'Angelo ^{d,e,+}, A. Incicchitti ^{b,g}, V.V. Kobychev ^a, S.I. Konovalov ^c, M. Laubenstein ^f, V.M. Mokina ^a, D.V. Poda ^{a,h}, V.N. Shlegel ⁱ, V.I. Tretyak ^{a,b}, V.I. Umatov ^c, Ya.V. Vasiliev ⁱ

^a Institute for Nuclear Research, Kyiv, Ukraine

- ^b INFN, sezione di Roma "La Sapienza", Rome, Italy
- ^c Institute of Theoretical and Experimental Physics, Moscow, Russia
- ^d Dipartimento di Fisica, Universita di Roma "Tor Vergata", Rome, Italy
- ^e INFN sezione Roma "Tor Vergata", Rome, Italy
- ^f INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
- ^g Dipartimento di Fisica, Universita di Roma "La Sapienza", Rome, Italy
- ^h Centre de Sciences Nucleaires et de Sciences de la Matiere, Orsay, France
- ⁱ Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia

+ deceased

¹¹⁶Cd

One of the most promising isotopes to search for $0\nu2\beta$ decay

• $Q_{2\beta} = 2813.44(13) \text{ keV}, \delta = 7.5\%$ • promising theoretical calculation • possible isotopic enrichment in large amount

CdWO₄ crystals

- good scintillation properties
- source = detector approach
- low levels of internal contamination
- particle discrimination ability

(↓ background)

 $\begin{array}{l} CdWO_4 \text{ were successfully used in low-} \\ \text{background experiments on search for } 2\beta \\ \text{decay of Cd and W [1], as well as for the} \\ \text{study of rare } \alpha \ \mbox{[2] and } \beta \ \mbox{[3] decays} \end{array}$

[1] ZPA 355(1996)433, PRC 68(2003)035501, EPJA 36(2008)167;
[2] PRC 67(2003)014310;
[3] PAN 59(1996)1, PRC 76(2007)064603

¹¹⁶CdWO₄ crystal scintillator

Good optical and scintillation properties of the crystal were obtained thanks to the deep purification of ¹¹⁶Cd and W, and the advantage of the low-thermal-gradient Czochralski technique to grow the crystal [1]

Boule of enriched ¹¹⁶CdWO₄ crystal (82% of ¹¹⁶Cd). The conic part of the boule is the beginning of the crystal growth.

Yield of the crystal boule is 87% of the initial powder

Losses (the total production cycle) < 3%

The optical transmission curve of ¹¹⁶CdWO₄ before and after annealing

Attenuation length is 31 cm at 480 nm

[1] JINST 6(2011)P08011

Experiment

2 crystals of ¹¹⁶CdWO₄, 1.162 kg in DAMA/R&D Experiment started in 2011

Upgrade - March 2014. Bg \downarrow to \approx 0.1 counts/ (yr×kg×keV) at 2.7–2.9 MeV

Energy resolution

Radioactive contaminations of ¹¹⁶**CdWO**₄ **crystal scintillators**

Chain	Nuclide	Activity, mBq/kg
²³² Th	²³² Th	≤ 0.07
	²²⁸ Th	0.026(2)
²³⁸ U	²³⁸ U- ²³⁴ Th	0.4(2)
	²²⁶ Ra	≤ 0.009
	²¹⁰ Pb	0.5(2)
	⁴⁰ K	≤ 0.2
	^{110m} Ag	≤ 0.02

Two neutrino double beta decay of ¹¹⁶Cd

 $T_{1/2} = [2.51 \pm 0.14(\text{syst.}) \pm 0.02(\text{stat.})] \times 10^{19} \text{ yr}$

Estimation of systematic errors

Conditions of the Fit:

- Variation of bounds for rad. contaminations
- Model of background
- Interval of fit
- Quenching for β (non proportional light response) [1,2]

[1] PRC 76(2007)064603 [2] NIMA 696(2012)144

Summary of the $T_{1/2}(2\nu 2\beta)$ results ¹¹⁶Cd

Response of the ¹¹⁶CdWO₄ detector to 2β processes in ¹¹⁶Cd simulated by EGS4

Limit on $0\nu 2\beta$ decay of ¹¹⁶Cd to g.s. of ¹¹⁶Sn

[1] G.J. Feldman and R. D. Cousins, Phys. Rev. D 57(1998)3873
[2] J. Barea, J. Kotila, and F. Iachello Phys. Rev. Lett. 109(2012)042501
[3] J.D. Vergados, H.Ejiri and F.Simkovic Rep. Prog. Phys. 75(2012)106301

Results

Decay mode	Transition	<i>T</i> _{1/2} , yr , present results	<i>T</i> _{1/2} , yr at 90% C.L.
0ν	g.s g.s.	$\geq 1.6 \times 10^{23}$	≥1.7 × 10 ²³ [1]
0ν	g.s 2+(1294 keV)	$\geq 5.8 \times 10^{22}$	≥2.9 × 10 ²² [1]
0ν	g.s 0 ₁ +(1757 keV)	$\geq 7.8 \times 10^{22}$	≥1.4 × 10 ²² [1]
0ν	g.s 0 ₂ +(2027 keV)	\geq 4.5 × 10 ²²	≥0.6 × 10 ²² [1]
0ν	g.s 2+ (2112 keV)	\geq 2.9 × 10 ²²	
0ν	g.s 2+ (2225 keV)	$\geq 4.0 \times 10^{22}$	
0∨ <i>M</i> 1	g.s g.s.	$\geq 0.2 \times 10^{22}$	≥0.8 × 10 ²² [1]
0∨ <i>M</i> 2	g.s g.s.	$\geq 0.9 \times 10^{21}$	≥0.8 × 10 ²¹ [1]
0∨ <i>bM</i>	g.s g.s.	$\geq 0.8 \times 10^{21}$	≥1.7 × 10 ²¹ [1]
2v	g.s g.s.	[2.51±0.02(stat.)±0.14(syst.)]×10 ¹⁹	see slide 10
2ν	g.s 2+(1294 keV)	$\geq 0.5 \times 10^{21}$	$\geq 2.3 \times 10^{21}$ [2]
2ν	g.s 0 ₁ +(1757 keV)	≥1.1 × 10 ²¹	≥2.0 × 10 ²¹ [2]
2ν	g.s 0 ₂ +(2027 keV)	≥0.9 × 10 ²¹	≥2.0 × 10 ²¹ [2]
2ν	g.s 2+ (2112 keV)	≥1.7 × 10 ²¹	≥1.7 × 10 ^{20 *} [3]
2ν	g.s 2+ (2225 keV)	≥1.6 × 10 ²¹	≥1.0 × 10 ^{20 *} [3]

[1] PRC 68(2003)035501 [2] NPA 577(1994)493 [3] Phys.Lett.B 249(1990)186 *68% C.L.

13

Possibility to improve the radio purity of $^{116}\mbox{CdWO}_4$ by re-crystallization

²²⁸Th in the initial ¹¹⁶CdWO₄ powder ~1.4 mBq/kg

Thorium expected to be reduced by a factor ~35 $\,\rightarrow\,$ 1 $\mu\text{Bq/kg}$

Reduction of K, Th, U and Ra contamination by re-crystallization \Rightarrow reduction of the background by a factor 4 \Rightarrow advancement the sensitivity to $0\nu 2\beta \Rightarrow \lim T_{1/2} \sim 5 \times 10^{23}$ yr

Conclusions

- Experiment to search for double beta decay processes in ¹¹⁶Cd with the help of enriched in ¹¹⁶Cd (to 82%) low background ¹¹⁶CdWO₄ scintillation detectors (1.16 kg) is in progress at the Gran Sasso underground laboratory of INFN (Italy).
- The $2\nu 2\beta$ half-life is $T_{1/2} (2\nu 2\beta) = [2.51 \pm 0.02(\text{stat.}) \pm 0.14(\text{syst.})] \times 10^{19} \text{ yr}$
- $T_{1/2}(0v2\beta) \ge 1.6 \times 10^{23} \text{ yr} \rightarrow \langle m_v \rangle < (1.4 1.8) \text{ eV}$
- New improved limits are obtained for $0v2\beta$ decay of ¹¹⁶Cd to exited levels of ¹¹⁶Sn: lim $T_{1/2} \sim (2.9-7.8) \times 10^{22}$ yr

The main background component, internal ²²⁸Th, can be reduced by a factor 35 by re-crystallization \rightarrow sensitivity of the experiment $T_{1/2} \ge 5 \times 10^{23}$ yr

Thank you for attention!

Back-up slides

	Isotop	Activity, mBq/kg
РМТ	²²⁶ Ra	548
	²²⁸ Ra	49
	²²⁸ Th	119
	⁴⁰ K	218
Copper	U	0.06
	Th	0.02
	⁴⁰ K	0.06
Light quides	U	0.51
	Th	0.17
	⁴⁰ K	0.93

Experiment