Search for rare nuclear decays with HPGe detectors at LNGS STELLA facility

MEDEX'2013, Prague, 11-14 June 2013

P. Belli¹, R. Bernabei^{1,2}, F. Cappella^{3,4}, R. Cerulli⁵, F.A. Danevich⁶, A. d'Angelo^{3,4}, S. d'Angelo^{1,2}, A. Di Marco¹, M.L. Di Vacri⁵, A. Incicchitti^{3,4}, G.P. Kovtun⁷, N.G. Kovtun⁷, M. Laubenstein⁵, S. Nisi⁵, D.V. Poda⁶, O.G. Polischuk^{3,6}, A.P. Shcherban⁷, D.A. Solopikhin⁷, J. Suhonen⁸, A.V. Tolmachev⁹, <u>V.I. Tretyak⁶</u>, R.P. Yavetskiy⁹

¹ INFN, Sezione di Roma "Tor Vergata", Rome, Italy
² Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
³ INFN, Sezione di Roma "La Sapienza", Rome, Italy
⁴ Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
⁵ INFN, Laboratori Nazionali del Gran Sasso, Assergi (Aq), Italy
⁶ Institute for Nuclear Research, Kyiv, Ukraine
⁷ Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine
⁸ Department of Physics, University of Jyväskylä, Finland
⁹ Institute for Single Crystals, Kharkiv, Ukraine

Gran Sasso's chamber of physics

Laboratory Nazionali del Gran Sasso (Italy) – 1400 m underground – 3600 m w.e.

STELLA – SubTErranean Low Level Assay – facilities for ultra low background α and γ spectroscopy

3600 m w.e. Massive passive shielding from selected materials (Cu, low radioactive Pb, Cd, polyethylene), flushing by Rn-free N₂ gas

In 2006 – 2012: ~ 150 – 470 γ spectroscopy measurements per year
 Details in: M. Laubenstein et al., Appl. Radiat. Isotopes 61 (2004) 167
 M. Laubenstein, report at ASPERA meeting, Durham, UK, 17-19.12.2012

Summary of small-scale DAMA-KINR experiments in fundamental physics in 2011-2013 with the STELLA facility:

Search for 2β processes

^{96,104} Ru	- best T _{1/2} limits
^{184,192} Os	- first searches
^{156,158} Dy	- first searches
^{190,198} Pt	- first searches

PRC 87 (2013) 034607 EPJA 49 (2013) 24 NPA 859 (2011) 126 EPJA 47 (2011) 91

Search for resonant absorption of hadronic solar ⁷Li axion in LiF crystalma < 8.6 keV</td>- best for ⁷Li axionPLB 711 (2012) 41

Search for α decay ¹⁹⁰Pt \rightarrow ¹⁸⁶Os* (137.2 keV) $T_{1/2} = 2.6 \times 10^{14}$ yr- first observationPRC 83 (2011) 034603

<u>2β of ^{96,104}Ru – P. Belli et al., Phys. Rev. C 87 (2013) 034607</u>

 ⁹⁶Ru: δ=5.54%, Q_{2β}=2714.51±0.13 keV, 2ε+εβ⁺+2β⁺ (1 of 6 2β⁺ decayers) not a good candidate for r-2ε0v after recent precise Q_{2β} measurement (S. Eliseev et al., PRC 83 (2011) 038501)
 ¹⁰⁴Ru: δ=18.62%, Q_{2β}=1301.2±2.7 keV, 2β⁻

Previous experiments (all – with natural Ru):

- 1. E.B. Norman, PRC 31 (1985) 1937 Earth level, HPGe 2×110 cm³, Ru 50 g, t = 178 h: $T_{1/2} > \sim 10^{16}$ yr
- Our preliminary measurements, P. Belli et al., EPJA 42 (2009) 171 LNGS, HPGe 468 cm³, 473 g, 158 h: 10¹⁸–10¹⁹ yr. However, ⁴⁰K ~3.4 Bq/kg + cosmogenic ¹⁰⁶Ru (511 keV)
- E. Andreotti et al., ARI 70 (2012) 1985 HADES 500 mwe, HPGe 395+325 cm³, 149 g, 2592 h: ~10¹⁹ yr
- 4. Present results LNGS 3600 mwe, HPGe 4×225 cm³ (in one cryostat), 720 g, 5479 h: $T_{1/2} > \sim 10^{20}$ yr

Purification by the electron beam melting:

 40 K 3400 \rightarrow 150 mBq/kg

Decay of ¹⁰⁶Ru ($T_{1/2} = 374$ d): ¹⁰⁶Ru 24 \rightarrow 5 mBq/kg

Process of decay	Decay mode	Level of daughter nucleus, E, keV	Ε _γ , keV	T _{1/2} , yr (preliminary)			
				HADES'2012	Present work		
⁹⁶ Ru → ⁹⁶ Mo							
2β+	0ν + 2ν	g.s.	511	>5.0×10 ¹⁹	>1.3×10 ²⁰		
εβ+	0ν	g.s.	511	>5.5×10 ¹⁹	>7.7×10 ¹⁹		
	2ν	g.s.	511	>5.5×10 ¹⁹	>8.0×10 ¹⁹		
	0ν +2ν	2+ 778	778	>2.7×10 ¹⁹	>2.3×10 ²⁰		
	0ν+2 ν	0+ 1148	778	>1.8×10 ¹⁹	>2.1×10 ²⁰		
2K	0ν	g.s.	2675	>5.4×10 ¹⁹	>1.0×10 ²¹		
KL	0ν	g.s.	2692	>6.9×10 ¹⁹	>2.3×10 ²⁰		
2L	0ν	g.s.	2709	>6.9×10 ¹⁹	>2.3×10 ²⁰		
2ε	2v	2+ 778	778	>6.5×10 ¹⁹	>2.6×10 ²⁰		
		0+ 1148	778	>4.2×10 ¹⁹	>2.5×10 ²⁰		
		2+ 1498	778	>3.0×10 ¹⁹	>1.7×10 ²⁰		
		2+ 1626	848	>3.9×10 ¹⁹	>3.6×10 ²⁰		
	0ν	2+ 778	778	>6.4×10 ¹⁹	>2.4×10 ²⁰		
		0+ 1148	778	>4.1×10 ¹⁹	>2.3×10 ²⁰		
		2+ 1498	778	>2.9×10 ¹⁹	>1.6×10 ²⁰		
		2+ 1626	848	>3.8×10 ¹⁹	>3.3×10 ²⁰		
Resonant KL	0ν+2ν	2700	1922	>2.7×10 ¹⁹	>2.0×10 ²⁰		
Resonant 2L	0ν+2ν	2713	813	>2.0×10 ¹⁹	>3.6×10 ²⁰		
¹⁰⁴ Ru→ ¹⁰⁴ Pd							
2β ⁻	0ν + 2ν	2 ⁺ 556	556	>1.9×10 ²⁰	>6.5×10 ²⁰ 8		

<u>2β of ^{184,192}Os – P. Belli et al., Eur. Phys. J. A 49 (2013) 24</u>

Natural Os 173 g, purity grade >99.999% (purified in Kharkiv Institute of Physics and Technology; probably the most pure Os in the world)

 ¹⁸⁴Os: δ=0.02%, Q_{2β}=1453.68±0.58 keV, 2ε+εβ⁺ not a good candidate for r-2ε0v after recent precise Q_{2β} measurement (C. Smorra et al., PRC 86 (2012) 044604)
 ¹⁹²Os: δ=40.78%, Q_{2β}=412.4±2.9 keV, 2β⁻

Very poor to-date $T_{1/2}$ limits (10^{10} – 10^{13} yr, extracted from old experiment with photoemulsions [J.H. Fremlin et al., Proc. Phys. Soc. A 65 (1952) 911])

Measurements: HPGe 468 cm³, 2741 h

Practically no excess in comparison with background; some presence of cosmogenic 185 Os (T_{1/2}=93.6 d, 3 mBq/kg), 137 Cs (2 mBq/kg), 207 Bi (0.4 mBq/kg).

<u>2β of ^{156,158}Dy – P. Belli et al., Nucl. Phys. A 859 (2011) 126</u>

Limits for other possible 2 β processes in ¹⁵⁶Dy and ¹⁵⁸Dy: T_{1/2} > 1.8×10¹⁴-7.1×10¹⁶ yr. Slight pollution by U/Th and ¹⁷⁶Lu (9 mBq/kg). By-product: limits for α decays of ^{156,158,160,161,162}Dy to ^{152,154,156,157,158}Gd^{*}: T_{1/2} > 10¹⁶-10¹⁷ yr. <u>2β of ¹⁹⁰Pt, ¹⁹⁸Pt – P. Belli et al., Eur. Phys. J. A 47 (2011) 91</u> 468 cm³, 1815 h

Pt 42.5 g, HP Ge 468 cm³, 1815 h

¹⁹⁰Pt: δ=0.014%, Q_{2β}=1384±6 keV, 2ε+εβ⁺ ¹⁹⁸Pt: δ=7.163%, Q_{2β}=1049.2±2.1 keV, 2β⁻

 $r-2\varepsilon 0v$ is possible

Limits for other possible 2 β transitions in ¹⁹⁰Pt: T_{1/2} > 8.4×10¹⁴ – 3.1×10¹⁶ yr, ¹⁹⁸Pt: T_{1/2} > 3.5×10¹⁸ yr (earlier limits are absent or very poor, ~10¹¹ yr from old photoemulsion exp.). The Pt is polluted by ^{192m}Ir (40 mBq/kg) and ¹³⁷Cs (7 mBq/kg), but not polluted by ⁴⁰K, ¹²

Search for resonant absorption of hadronic solar ⁷Li axion in LiF crystal – P. Belli et al., Phys. Lett. B 711 (2012) 41

Axion – hypothetical particle which appears as result of solution of the "strong CP problem" by Peccei-Quinn'1977 (further modifications by Kim-Shifman-Vainstein-Zakharov, Dine-Fischler-Srednicki-Zhitnitskii).

Sun could be source of axions; in particular they are emitted instead of γ quanta in magnetic transitions in deexcitations of excited nuclear levels, e.g. in ⁷Li (pp cycle):

 $^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + v_{e}$.

axion

Arriving to the Earth from the Sun, these quasi-monoenergetic axions could excite the same nuclei (⁷Li).

One can look for deexcitation γ quanta of 477.6 keV.

LiF(W) crystal 553 g, HPGe 244 cm³, 4044 h (pure, U/Th < ~0.01 Bq/kg)

First observation of α decay of ¹⁹⁰Pt to the first excited level (E_{exc}=137.2 keV) of ¹⁸⁶Os – P. Belli et al., Phys. Rev. C 83 (2011) 034603

¹⁹⁰Pt \rightarrow ¹⁸⁶Os^{*} (E_{exc}=137.2 keV): S = 132±17 counts T_{1/2} = 2.6^{+0.4}_{-0.3}(stat.)±0.6(syst.)×10¹⁴ yr

Alternative mimicking processes were not found.

Reasonable agreement with theoretical expectations: $(3.2-7.0) \times 10^{13}$ yr.

Old and new schemes of ¹⁹⁰Pt α decay:

Just to remind of earlier experiment with the STELLA facility:

First observation of single β decay 115 In $\rightarrow ^{115}$ Sn^{*} (497.4 keV) – C.M. Cattadori et al., Nucl. Phys. A 748 (2005) 333

4 HP Ge in one cryostat (~225 cm³ each) Natural In (95.71% ¹¹⁵In), 929 g, 2762 h (background 1601 h)

¹¹⁵In \rightarrow ¹¹⁵Sn^{*} (E_{exc}=137.2 keV): S = 90±22 counts T_{1/2} = 3.7±1.0×10²⁰ yr (p = 1.2±0.3×10⁻⁶) Alternative mimicking processes were not found.

Old and new schemes of ¹¹⁵In β decay:

Confirmed by other groups (J.S.E. Wieslander et al., PRL 103 (2009) 122501; E. Andreotti et al., PRC 84 (2011) 044605)

 $Q_{\beta} = \Delta M_{a} - E_{exc} = 497.489(10) - 497.334(22) \text{ keV} = 155(24) \text{ eV} | \beta \text{ decay with the lowest } Q_{\beta}!$ B.J. Mount et al., PRL 103 (2009) 122502 - 10 eV accuracy! $^{187}Re - 2.469(4) \text{ keV}$ $^{163}Ho - 2.555(16) \text{ keV}$

Problems with theoretical $T_{1/2}$ – atomic effects? – J. Suhonen et al., JPG 37 (2010) 064008

Conclusions

1. Various 2 β processes, including resonant 2 ϵ 0 ν captures, were searched for in ^{96,104}Ru, ^{156,158}Dy, ^{184,192}Os, ^{190,198}Pt with HPGe spectrometry. The following T_{1/2} limits were established: T_{1/2} > 1.8×10¹⁴ – 1.0×10²¹ yr. These values are mostly the best today, sometimes better than previous ones by few orders of magnitude, sometimes obtained at the first time.

It seems to be interesting to re-measure more precisely $Q_{2\beta}$ values for isotopes where r-2 ϵ 0 ν is possible and where $Q_{2\beta}$ are known with not so good accuracy: ¹⁹⁰Pt - $Q_{2\beta}$ =1384±6 keV ¹⁵⁸Dy - $Q_{2\beta}$ =282.7±2.5 keV

- Resonant absorption of hypothetical hadronic solar ⁷Li axions in LiF crystal was looked for. The effect is not observed, the obtained limit on axion mass m_a < 8.6 keV is the best for ⁷Li axions.
- 3. α decay ¹⁹⁰Pt \rightarrow ¹⁸⁶Os^{*} (137.2 keV) was observed at the first time, probability is 0.25%, T_{1/2} = 2.6×10¹⁴ yr.

Thank you for attention!

Axion source,	Short description	lim <i>m</i> a	Year
E_{γ} (keV)		(keV)	[Ref.]
⁷ Li, $E_{\gamma} = 477.6$	HP Ge 78 cm ³ , Li 61.4 g, 2667h	32.0 ^a	2001 [19]
	HP Ge 160 cm ³ , LiOH 3.9 kg, 3028h	16.0 ^b	2005 [20]
	HP Ge 408 cm ³ , LiF powder 243 g, 722h	13.9 ^b	2008 [14]
	HP Ge 244 cm ³ , LiF crystal 553 g, 4044h	8.6 ^b	This work
57 Fe, $E_{\gamma} = 14.4$	Si(Li), Fe 33 mg (⁵⁷ Fe 95%), 1472h	0.745 ^a	1998 [21]
	Si(Li), Fe 16 mg (⁵⁷ Fe 80%), 712h	0.360 ^b	2007 [22]
	Si PIN, Fe 206 mg (⁵⁷ Fe 96%), 334h	0.216 ^a	2007 [23]
	Si(Li), Fe 290 mg (⁵⁷ Fe 91%), 2028h	0.159 ^a	2009 [24]
	Total Earth heat flux	1.6	2009 [25]
	Si(Li), Fe 1.26 g (⁵⁷ Fe 91%), 1075h	0.145 ^a	2010 [26]
83 Kr, $E_{\gamma} = 9.4$	PC ^c 243 cm ³ , Kr gas 1.7 g, 564h	5.5 ^a	2004 [27]

Summary of searches for quasi-monoenergetic solar axions coupled to nucleons through resonant excitation of nuclei.

^a At 95% C.L.

^b At 90% C.L.

^c Proportional counter.

How our knowledge on $Q_{2\beta}$ and nuclear levels could be changed:

 $Q_{26}(^{192}Os) = 413.5 \pm 3.0$ [G. Audi et al., 1995]; 412.4±2.9 [2003]; 408.2±3.3 [2012]

 $Q_{2\beta}(^{102}Pd) = 1173.0\pm 2.4$ [G. Audi et al., 2003] but 1203.27 ± 0.36 [M. Goncharov et al., PRC 84 (2011) 028501]

¹⁰⁶Pd level 2741 keV – J^{π} =(1,2⁺) [ToI, 1998] but 4⁺ [NNDC, 12.06.2013]