

[Eur. Phys. J. A 50 (2014) 134]

Alessandro Di Marco

I.N.F.N. & Università di Roma Tor Vergata

100° Congresso Nazionale della S.I.F. Pisa 25 Settembre 2014

Lo scintillatore BaF₂

- Utilizzato in varie applicazioni come la rivelazione di γ e neutroni
- Utilizzato in medicina per la *Positron Emission Tomography* (PET)
- Rivelatore promettente per studiare decadimenti doppio beta (ββ) di isotopi del Bario:
 - 130 Ba [$Q_{\beta\beta} = 2618.7(2.6) \text{ keV}$]

 \rightarrow (0v+2v) osservato in esp. radiochimici

 $T_{\frac{1}{2}} = (2,2 \pm 0,5) \times 10^{21} \text{ y}$ $T_{\frac{1}{2}} = (6,0 \pm 1,1) \times 10^{20} \text{ y}$

- 132 Ba [$Q_{\beta\beta} = 844.0(1.1) \text{ keV}$]
- Primo studio di rivelazione diretta di decadimenti $\beta\beta$ del ¹³⁰Ba eseguito da DAMA con BaF₂ dove si sono ottenuti limiti per i canali vari di decadimento dell'ordine di 10¹⁷ yr

 \rightarrow desiderabili ulteriori R&D su rivelatori BaF₂

- I cristalli di BaF₂ tipicamente hanno livelli elevati di contaminazione dale catene di U/Th
- In particolare nella misura presentata di seguito tali contaminazioni hanno permesso di:
 - Studiare la vita media del ²¹²Po
 - Studiare per la prima volta il decadimento β del ²²²Rn
 - Porre dei limiti sperimentali migliori rispetto a quelli già disponibili per i decadimenti $\beta\beta$ di ²¹²Pb, ²²²Rn e ²²⁶Ra

DAMA SET-UPS

an observatory for rare processes @ LNGS

- DAMA/LIBRA (DAMA/NaI)
- DAMA/LXe
- DAMA/R&D
- DAMA/Crys
- DAMA/Ge

Collaboration:

Roma Tor Vergata, Roma La Sapienza, LNGS, IHEP/Beijing

- + by-products and small scale expts.: INR-Kiev
- + neutron meas.: ENEA-Frascati
- + in some studies on bb decays (DST-MAE project): IIT Kharagpur, India

Web Site: http://people.roma2.infn.it/dama

La configurazione sperimentale

Cristallo BaF_2 installato in DAMA/R&D Dimensioni: $\bigcirc 3" \times 3"$ Peso: 1,714 kg Tempo vivo di acquisizione: 101 ore

Cristallo accoppiato tramite due guide di luce in quarzo [\bigcirc 3" × 10 cm] a 2 PMT ETL 9302FLA

Acquisizione event-by-event I segnali dei PMT sono sommati e inviati a un TD Acqiris DC2 [1Gsample/s] e registrati su una finestra temporale di 4000 ns

Trigger dato dalla coincidenza dei segnali dei 2 PMT [trigger rate ≈75 cps]

Soglia energetica hardware $\approx 30 \text{ keV}$

Apparato calibrato con sorgenti di: ²²Na, ¹³⁷Cs, ²⁴¹Am, ⁶⁰Co, ¹³³Ba e ²²⁸Th

Risoluzione energetica:

 $FWHM_{\gamma} [keV] = 397(54) + 15,6(3) \times E_{\gamma} [keV]$

Scintillatori organici di grande massa presentano scale energetiche per $\gamma \in \beta$ leggermente diverse, tale effetto per il rivelatore BaF₂ usato è trascurabile

Pulse Shape Discrimination

- Impulsi originati da particelle diverse hanno diverso profilo temporale
- PSD ottenuta dalla stima del tempo medio:

 $\tau = \frac{\sum_{i} a_i \cdot t_i}{\sum_{i} a_i}$

- ampiezza dell'impulso a_i :
- tempo corrispondente t_i: all'i-esimo canale del TD

Studio dei contaminanti $\alpha / B = 0.200(1) + 0.0245(1) \times E_{\alpha}[MeV]$

[energia espressa in keV elettrone equivalente]

<u>Procedura di fit:</u>

• cost. + exp(-t/ T_{212}_{Po}) + exp(-t/ T_{214}_{Po})

cost. \rightarrow random coincid. < 1%

- $162.3 \ \mu s < T_{214}_{Po} < 166.3 \ \mu s$
- considerati 30 diversi intervalli temporali per 3 diversi bin temporali: 1, 2 e 3 ns per canale
- χ^2 /d.o.f. = 0.92-1.15

Studio di decadimenti ββ delle catene U/Th

L'elevata contaminazione del rivelatore BaF_2 da Ra permette di studiare alcuni decadimenti $\beta \in \beta\beta$ di nuclidi appartenenti alle catene U/Th

Questi sono difficili da studiare a causa degli altri decadimenti veloci che possono dare essi stessi o la catena cui appartengono

Modo $2\nu: (A,Z) \rightarrow (A,Z+2) + 2e^- + 2\nu_e$ previsto dal MS Modo $0\nu: (A,Z) \rightarrow (A,Z+2) + 2e^-$ possibile se ν è particella di Majorana

Decadimenti $\beta\beta$ di nuclidi instabili hanno $Q_{\beta\beta}$ maggiore rispetto ai nuclidi che decadono esclusivamente $\beta\beta$ ($\simeq 40$ MeV contro ≤ 4.3 MeV)

- \rightarrow Maggiore probabilità di avvenire
- \rightarrow Vite medie inferiori
- \rightarrow Maggiore difficoltà nel loro studio

Studio del decadimento β del ²²²Rn

 222 Rn è considerato decadere α al 100% Il suo decadimento β è energeticamente possibile: $Q_{\beta} = (24 \pm 21) \text{ keV con } T_{1/2} = 4.8 \times 10^5 \text{ y}$

 $\begin{array}{c} \begin{array}{c} 222\\ 86 \end{array} \operatorname{Rn} \xrightarrow{\beta? \simeq 4.8 \times 10^5 \text{ y}} \\ \begin{array}{c} 222\\ 87 \end{array} \operatorname{Fr} \xrightarrow{\beta 14.2 \text{ min}} \\ 2028 \text{ keV} \end{array} \xrightarrow{222} \operatorname{Ra} \xrightarrow{\alpha 38.0 \text{ s}} \\ \begin{array}{c} 6679 \text{ keV} \end{array} \xrightarrow{218} \operatorname{Rn} \xrightarrow{\alpha 35 \text{ ms}} \\ \begin{array}{c} 7263 \text{ keV} \end{array} \xrightarrow{214} \operatorname{Po} \xrightarrow{\alpha 164.3 \, \mu \text{s}} \\ \begin{array}{c} 822\\ 82 \end{array} \operatorname{Pb}(22.3 \text{ y}) \end{array} \right) \end{array}$

A causa dell'elevata rate sperimentale (75 cps) e considerato il tempo morto sperimentale (1.65 ms) è possibile studiare solo la catena:

$$^{222}\mathrm{Fr}
ightarrow ^{222}\mathrm{Ra}
ightarrow ^{218}\mathrm{Rn}$$

selezionando eventi:

- 1) β di energia (30 2207) keV (attesi 99% di eventi dal ²²²Fr)
- α di energia (2109 2623) keV_{ee} con intervallo temporale [1.65 ms, 1.65 ms + 5×38.0 s] 2)
- 3) α di energia (2398 2946) keV_{ee} con intervallo temporale [1.65 ms, 1.65 ms + 5×35.0 ms]

Alessandro Di Marco - Pisa 25/09/2014 - 100° Congresso Nazionale S.I.F.

BKG da eventi α casuali dalle catene U/Th a causa dell'ampio intervallo temporale considerato nell'evento (2)

Fit con modello BKG + Gaussiana nell'intervallo (2110 - 3260) keV

$$T_{1/2}^{\beta}(^{222}\text{Rn}) > 8.0 \text{ y}$$
 at 90% C.L.

Studio del decadimento ββ del ²²²Rn

^{222}Rn è considerato decadere α al 100%

Analogamente al decadimento β è possibile studiare solo la catena:

 222 Rn $\rightarrow ^{222}$ Ra $\rightarrow ^{218}$ Rn

selezionando eventi:

- 1) β di energia (0 2231) keV
- 2) α di energia (2109 2623) keV_{ee} con intervallo temporale [1.65 ms, 1.65 ms + 5×38.0 s]
- 3) α di energia (2398 2946) keV_{ee} con intervallo temporale [1.65 ms, 1.65 ms + 5×35.0 ms]

$$\lim T_{1/2}^{2\beta} = \varepsilon \cdot t \cdot R^{\alpha/\beta} \cdot T_{1/2}^{\alpha/\beta} / \lim S. \lim_{\substack{\epsilon_{2\nu} \\ t = -\infty}} T_{1/2}^{\alpha/\beta} / \lim S. \lim_{\substack{\epsilon_{2\nu} \\ t = -\infty}} T_{1/2}^{\alpha/\beta} / \lim S. \lim_{\substack{\epsilon_{2\nu} \\ t = -\infty}} T_{1/2}^{\alpha/\beta} / \lim S. \lim_{\substack{\epsilon_{2\nu} \\ t = -\infty}} T_{1/2}^{\alpha/\beta} / \lim S. \lim_{\substack{\epsilon_{2\nu} \\ t = -\infty}} T_{1/2}^{\alpha/\beta} / \lim S. \lim_{\substack{\epsilon_{2\nu} \\ t = -\infty}} T_{1/2}^{\alpha/\beta} / \lim S. \lim_{\substack{\epsilon_{2\nu} \\ t = -\infty}} T_{1/2}^{\alpha/\beta} / \lim S. \lim_{\substack{\epsilon_{2\nu} \\ t = -\infty}} T_{1/2}^{\alpha/\beta} / \lim S.$$

Dai dati si ricava: lim S = 5.4×10^3 eventi $\varepsilon_{2\nu} = 0.849$ e $\varepsilon_{0\nu} = 0.841$ da MC t = 101 ore

$$T_{1/2}^{2\beta(0\nu+2\nu)}(^{222}\text{Rn}) > 8.0\,\text{y}$$
 at 90% C.L.

Studio del decadimento ββ del ²²⁶Ra

²²⁶Ra decade α in ²²²Rn con T_{1/2} = 1600 y nel \approx 100% dei casi e nel 3.2 \times 10⁻⁹% decade in claster emettendo ¹⁴C

Energeticamente ²²⁶Ra può decadere anche $\beta\beta$ [Q_{$\beta\beta$} = (472 ± 5) keV] producendo la catena

$$\underset{88}{\overset{226}{\text{Ra}}} \operatorname{Ra} \xrightarrow{\frac{2\beta?}{472 \, \text{keV}}} \underset{90}{\overset{226}{\text{90}}} \operatorname{Th} \xrightarrow{\frac{\alpha \, 30.57 \, \text{min}}{6451 \, \text{keV}}} \underset{88}{\overset{222}{\text{88}}} \operatorname{Ra} \xrightarrow{\frac{\alpha \, 38.0 \, \text{s}}{6679 \, \text{keV}}} \underset{86}{\overset{218}{\text{86}}} \operatorname{Rn} \xrightarrow{\frac{\alpha \, 35 \, \text{ms}}{7263 \, \text{keV}}} \underset{84}{\overset{214}{\text{Po}}} \operatorname{Po} \xrightarrow{\frac{\alpha \, 164.3 \, \mu \text{s}}{7833 \, \text{keV}}} \underset{82}{\overset{210}{\text{Pb}}} \operatorname{Pb}(22.3 \, \text{y})$$

Analogamente al ²²²Rn è possibile studiare solo la catena:

 226 Th $\rightarrow ^{222}$ Ra $\rightarrow ^{218}$ Rn

selezionando eventi:

- 1) α di energia (2000 2502) keV_{ee}
- 2) α di energia (2109 2623) keV_{ee} con intervallo temporale [1.65 ms, 1.65 ms + 5×38.0 s]
- 3) α di energia (2398 2946) keV_{ee} con intervallo temporale [1.65 ms, 1.65 ms + 5×35.0 ms]

$$\lim T_{1/2}^{2\beta} = \varepsilon \cdot t \cdot R^{\alpha/\beta} \cdot T_{1/2}^{\alpha/\beta} / \lim S.$$

Dai dati si ricava: lim S = 5.4×10^3 eventi $\varepsilon_{(2\nu+0\nu)} = 0.833$ da MC t = 101 ore

$$T_{1/2}^{2\beta(0\nu+2\nu)}(^{226}\text{Ra}) > 1.2 \times 10^6 \text{ y}$$
 at 90% C.L.

Studio del decadimento ββ del ²¹²Pb

²¹²Pb decade β in ²¹²Bi con T_{1/2} = 10.64 ore che decade β in ²¹²Po con T_{1/2} = 60.55 min ²¹²Pb può decadere direttamente $\beta\beta$ in ²¹²Po

 $\begin{array}{c} {}^{212}_{82} \mathrm{Pb} \xrightarrow{\beta \, 10.64 \, \mathrm{h}}_{574 \, \mathrm{keV}} \xrightarrow{212}_{83} \mathrm{Bi} \xrightarrow{\beta \, 60.55 \, \mathrm{min}}_{2254 \, \mathrm{keV}} \xrightarrow{212}_{84} \mathrm{Po}(299 \, \mathrm{ns}) \end{array}$

$$\stackrel{212}{}_{82}^{212} \text{Pb} \xrightarrow[2828 \text{ keV}]{}_{2828 \text{ keV}} \stackrel{212}{}_{84}^{212} \text{Po}(299 \text{ ns})$$

Per identificare il processo si studiano gli eventi Bi-Po

Nuclide	Main channel of		$T_{1/2}$ (and branching ratio, B)		
	decay and $T_{1/2}$		[Eur. Phys. J. A 50 (2014) 134]		Other works
²¹² Po	α	$299 \pm 2\mathrm{ns}$	$298.8 \pm 0.8 (\text{stat.}) \pm 1.4 (\text{syst.})$		$294.7 \pm 0.6 (\text{stat.}) \pm 0.8 (\text{syst.})$
					299 ± 2
$^{212}\mathrm{Pb}$	eta	$10.64\mathrm{h}$	$2\beta 2\nu>75\mathrm{h}$	(B < 14%)	$> 146 \mathrm{h}$
			$2\beta 0\nu > 20\mathrm{y}$	$(B < 6.0 \times 10^{-3}\%)$	$> 6.7 \mathrm{y}$
222 Rn	α	$3.8235\mathrm{d}$	$\beta > 8.0\mathrm{y}$	(B < 0.13%)	-
			$2\beta 2\nu > 8.0{\rm y}$	(B < 0.13%)	$> 40 \mathrm{d}$
			$2\beta 0\nu > 8.0{\rm y}$	(B < 0.13%)	$> 2.8 {\rm y}$
226 Ra	α	1600 y	$2\beta 2 u > 1.2 imes 10^6 \mathrm{y}$	(B < 0.13%)	$> 4.5 imes 10^3 \mathrm{y}$
			$2eta 0 u > 1.2 imes 10^6\mathrm{y}$	(B<0.13%)	$> 4.1 \times 10^4 \mathrm{y}$

Questa misura ha permesso di:

- Determinare con maggiore precisione $T_{1/2}$ del decadimento del ²¹²Po
- Studiare per la prima volta il decadimento β del ²²²Rn
- Studiare i decadimenti $\beta\beta$ di ²²²Rn, ²²⁶Ra e ²¹²Pb

Alessandro Di Marco - Pisa 25/09/2014 - 100° Congresso Nazionale S.I.F.

Conclusioni

- Il rivelatore BaF₂ usato presenta contaminazione da ²²⁶Ra e ²²⁸Th riconducibile alla affiità chimica del Ra con il Ba
- La risposta del rivelatore è stata investigata in un ampio intervallo energetico (fino a 9 MeV) e la buona capacità di PSD del rivelatore è stata dimostrata
- La sensibilità sperimentale è stata fortemente limitata dall'elevato tempo morto
- I risultati possono essere migliorati usando un rivelatore BaF₂ di minore tempo morto e/o migliore risoluzione
- La contaminazione da Ra è attualmente la principale limitazione all'uso di rivelatori BaF_2 nello studio di decadimenti $\beta\beta$ del ¹³⁰Ba e del ¹³²Ba
- Attualmente un R&D per purificare questi rivelatori dal Radio è attualmente in corso presso i Laboratori Nazionali del Gran Sasso

