First results of the experiment to search for double beta decay of ¹⁰⁶Cd with ¹⁰⁶CdWO₄ crystal scintillator in coincidence with four crystals HPGe detector

<u>V.I. Tretyak a</u>, P. Belli b, R. Bernabei b,c, V.B. Brudanin d,
 F. Cappella e,f, R. Cerulli g, D.M. Chernyak a, F.A. Danevich a,
 A. Incicchitti e,f, M. Laubenstein g, V.M. Mokina a, D.V. Poda a,
 O.G. Polischuk a,f, R.B. Podviyanuk a, I.A. Tupitsyna h

^a Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine
^b Dipartimento di Fisica, Università di Roma "Tor Vergata", I-00133 Rome, Italy
^c INFN sezione Roma "Tor Vergata", I-00133 Rome, Italy
^d Joint Institute for Nuclear Research, 141980 Dubna, Russia
^e Dipartimento di Fisica, Università di Roma "La Sapienza", I-00185 Rome, Italy
^f INFN, sezione di Roma "La Sapienza", I-00185 Rome, Italy
^g INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ), Italy
^h Institute of Scintillation Materials, 61001 Kharkiv, Ukraine

International Workshop RPScint'2013, Kyiv, Ukraine, 17-20.09.2013

Contents:

- 1. Introduction and motivation
- 2. R&D for $^{106}CdWO_4$
- 3. Experimental setup and measurements
- 4. Results
- 5. Conclusions

Double beta decay: $(A,Z) \rightarrow (A,Z\pm 2)$

Allowed in SM:
 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2v_e$ - two-neutrino $2\beta^-$ decayForbidden in SM, $\Delta L=2$:
 $(A,Z) \rightarrow (A,Z+2) + 2e^-$ - neutrinoless $2\beta^-$ decay $(A,Z) \rightarrow (A,Z+2) + 2e^- + M$ - $2\beta^-0\nu$ decay with Majoron emission

 $2\beta^{+}/\epsilon\beta^{+}/2\epsilon$ processes, decays to excited states, different Majorons ...

2β0v requires: $v_e = -v_e$ (Majorana particle) m(v_e)≠0 (or right-handed admixtures)

Many extensions of the SM predict $m(v_e) \neq 0$ and, as a result, $2\beta 0\nu$ processes. Experimental observation of this exotic phenomenon would be an unambiguous signal of new physics which lies beyond the SM.

Status of experimental investigations of 2β decay

2 β⁻	2 β+/εβ+/2ε
35 candidates	34 candidates
Nat. abundances δ ~ (5-10-100)%	Typical δ < 1% with few exclusions
$Q_{2\beta}$ up to 4.3 MeV	$Q_{2\beta} > 2$ MeV only for 6 nuclides
2β2v is registered for 11 nuclei (⁴⁸ Ca, ⁷⁶ Ge, ⁸² Se, ⁹⁶ Zr, ¹⁰⁰ Mo, ¹¹⁶ Cd, ¹²⁸ Te, ¹³⁰ Te, ¹³⁶ Xe, ¹⁵⁰ Nd, ²³⁸ U) with T _{1/2} = 10 ¹⁸ – 10 ²⁴ yr	2ε2ν - ¹³⁰ Ba ? (T _{1/2} ~ 10 ²¹ yr) - ⁷⁸ Kr ? (T _{1/2} ~ 10 ²² yr)
Sensitivity to $2\beta 0v$ up to 10^{25} yr	Sensitivity to $0v$ up to 10^{21} yr

One positive claim on observation of $2\beta^{-}0\nu$ in ⁷⁶Ge by part of HM (T_{1/2} = 2.2×10²⁵ yr), on the edge of current sensitivity of GERDA (2.1×10²⁵ yr)

2β+/εβ+/2ε studies are less popular but nevertheless: Information from 2β+/εβ+/2ε is supplementary to 2β⁻ (possible contributions of right-handed currents to 0v, M. Hirsch et al., ZPA 347 (1994) 151)

¹⁰⁶Cd is attractive because of:

- (1) $Q_{2\beta} = 2775.39 \pm 0.10 \text{ keV} \text{one of only six } 2\beta^+ \text{ nuclides}$
- (2) Quite high natural abundance $\delta = 1.25\%$
- (3) Possibility of resonant $2\epsilon_0 v$ captures to excited levels of daughter ¹⁰⁶Pd (2718 keV 2K0v, 2741 keV KL₁0v, 2748 keV KL₃0v)
- (4) Theoretical $T_{1/2}$ are quite optimistic for some modes (g.s. \rightarrow g.s.): $2\epsilon^2\nu - (2.0-2.6)\times 10^{20} \text{ yr [1]},$ $- 4.8\times 10^{21} \text{ yr [2]},$ $\epsilon\beta^+2\nu - (1.4-1.6)\times 10^{21} \text{ yr [1]},$
 - 2.9×10²² yr [2]
 - [1] S. Stoica et al., EPJA 17 (2003) 529 [2] J. Suhonen, PRC 86 (2012) 024301

Decay scheme of ¹⁰⁶Cd

Current experiments to search for 2 β processes in ¹⁰⁶Cd

(1) TGV-2: 32 planar HPGe + 16 foils of ¹⁰⁶Cd (δ=75%), LSM (France) T_{1/2} limits for different modes: ~ 10²⁰ yr N.I. Rukhadze et al., NPA 852 (2011) 197, BRASP 75 (2011) 879

PASSIVE SHIELDING

 (2) COBRA: 32 semiconductors CdZnTe 1 cm³ each, LNGS (Italy) T_{1/2} limits for different modes: ~ 10¹⁸ yr K. Zuber, Prog. Part. Nucl. Phys. 64 (2010) 267 (3) Our previous measurements with ¹⁰⁶CdWO₄ crystal scintillator, LNGS (Italy)
 T_{1/2} limits for different modes: ~ 10²⁰–10²¹ yr (mostly the best limits)
 P. Belli et al., PRC 85 (2012) 044610

 R&D: Purification of enriched ^{nat}Cd & ¹⁰⁶Cd by vacuum distillation (~ 0.1 ppm; Kharkiv Phys. Techn. Institute, Kharkiv, Ukraine); Synthesis of CdWO₄ & ¹⁰⁶CdWO₄ powders; Growth of ^{nat}CdWO₄ of improved quality (Czochralski method). R. Bernabey et al., Metallofiz. Nov. Tekhn. 30 (2008) 477

Growth of ¹⁰⁶CdWO₄ crystals by Low-Thermal-Gradient Czochralski technique (Nikolaev Institute of Inorg. Chem., Novosibirsk, Russia): output ~90%, loss of powder <0.3%, better quality and radiopurity P. Belli et al., NIMA 615 (2010) 301

¹⁰⁶CdWO₄ crystal scintillators (¹⁰⁶Cd enrichment – 66%)

¹⁰⁶CdWO₄ scintillator 215 g

Excellent optical and scintillation properties thanks to special R&D to purify raw materials and Low-Thermal-Gradient Czochralski technique to grow the crystal [P. Belli et al., NIMA 615 (2010) 301]

Low background scintillation detector with ¹⁰⁶CdWO₄ crystal scintillator

Low background scintillation set-up DAMA/R&D LNGS (Italy), 3600 m w.e.

Next step: ¹⁰⁶CdWO₄ scintillator in coincidence/anticoincidence with four HPGe detectors

To suppress radioactivity from PMT, PbWO₄ light-guide is used. It is grown from archeological lead: A(²¹⁰Pb) < 0.3 mBq/kg [F.A. Danevich et al., NIMA 603 (2009) 328]

¹⁰⁶CdWO₄ in the GeMulti setup with 4 HPGe detectors (in one cryostat)

4 HPGe, ~ 225 cm³ each, in one cryostat

¹⁰⁶CdWO₄ in coincidence / anticoincidence with HPGe

Detection efficiency ~ 5 - 7%

Background expected to be several events during year

Estimated sensitivity to two neutrino $\epsilon\beta^+$ and $2\beta^+$ in ¹⁰⁶Cd: T_{1/2} ~ 10²⁰ - 10²¹ yr

Theory: $2\nu 2K$ $10^{20} - 5 \times 10^{21}$ yr $2\nu\epsilon\beta^+$ $8 \times 10^{20} - 4 \times 10^{22}$ yr

DAQ:

time and energy for each HPGe;

shape of signal (in time) for ¹⁰⁶CdWO₄ (>580 keV); different triggers (c/ac)

Calibration: ²²Na, ⁶⁰Co, ¹³⁷Cs, ²²⁸Th ¹⁰⁶CdWO₄ – FWHM_{γ} = (20.4×E_{γ})^{1/2}

²²Na:

no coincidence with HPGe and coincidence with 511 keV in HPGe

Spectrum of ¹⁰⁶CdWO₄ (β/γ events) measured during 3189 h (anticoincidence with HPGe)

Simulations (EGS4): ¹⁰⁶CdWO₄ contaminations Al cryostat

Spectrum of ¹⁰⁶CdWO₄ (3189 h) in coincidence with HPGe detectors:

Simulation of 2β processes in ¹⁰⁶Cd: EGS4 + DECAY0 event generator

DECAY0: O.A. Ponkratenko et al., Phys. At. Nucl. 63 (2000) 1282

$T_{1/2}$ limits on 2 β processes in ¹⁰⁶Cd

Comparison of number of events, expected from fit of 106 CdWO₄, w/o coincidence with experimental number of events measured in coincidence of 106 CdWO₄ + HPGe

17

Very preliminary T_{1/2} limits:

Decay	Decay	Level	$\delta E \ (\text{keV})$	η	$\lim S$	$T_{1/2}$ limit (yr) at 90% C.L.	
channel	mode	of 106 Pd				Present work	Best previous
		(keV)					limits
2ε	2ν	$0^+_1 \ 1134$	50 - 750	0.037	10.2	$\geq 2.2 \times 10^{20}$	$\geq 1.7 \times 10^{20} \ [7]$
	0ν	g.s.	1550 - 2400	0.004	6.3	$\geq 3.6 \times 10^{19}$	$\geq 1.0 \times 10^{21} \ [7]$
$\varepsilon\beta^+$	2ν	g.s.	550 - 1500	0.056	4.9	$\geq 6.8 \times 10^{20}$	$\geq 4.1 \times 10^{20} \ [25]$
	2ν	$0^+_1 \ 1134$	550 - 1500	0.072	4.9	$\geq 8.8 \times 10^{20}$	$\geq 3.7 \times 10^{20} \ [7]$
	0ν	g.s.	950 - 2500	0.069	4.7	$\geq 8.8 \times 10^{20}$	$\geq 2.2 \times 10^{21} \ [7]$
$2\beta^+$	2ν	g.s.	550 - 1500	0.101	4.9	$\geq 1.2 \times 10^{21}$	$\geq 4.3 \times 10^{20} \ [7]$
	0ν	g.s.	950 - 2500	0.119	4.7	$\geq 1.5 \times 10^{21}$	$\geq 1.2 \times 10^{21} \ [7]$

References:

- 7. P. Belli et al., PRC 85 (2012) 044610
- 25. P. Belli et al., APP 10 (1999) 115

Conclusions

¹⁰⁶CdWO₄ crystal scintillator works now with four HPGe detectors ~225 cm³ each, thus one can use coincidence/anticoincidence modes suppressing background

¹⁰⁶CdWO₄ was cleaned by ultra-pure nitric acid + K-free detergent that leads to removing of ²⁰⁷Bi surface contamination

Radiopure PbWO₄ crystal – grown from archeological lead – and with good optical properties is used as the light-guide to further suppress background from PMT

After 3189 h of measurements underground in the LNGS, first (preliminary) $T_{1/2}$ limits on 2 β processes in ¹⁰⁶Cd are achieved on the level of $10^{20} - 10^{21}$ yr. Some of them are better than those obtained on the previous stage of the experiment and close to theoretical expectations

Data collection is in progress

Thanks for your attention!