

Istituto Nazionale di Fisica Nucleare

Low level measurements for rare nuclear transitions in Hf isotopes

Alice Leoncini

alice.leoncini@roma2.infn.it

ICRM-LLRMT 2022

Assergi, May 2-6, 2022

• **Passive source approach** (source≠detector): gamma-ray

spectrometry technique

• Active source approach (source=detector) : crystal scintillator

Both the techniques are implemented and optimized to investigate rare nuclear decays in Hf nuclides, such as α decay to the ground level and to the first excited state and 2β decays of ¹⁷⁴Hf.

Interesting in studying the 34 $2\beta^+$ emitters

- ^{*} 2β decay without the presence of neutrinos, if observed, could open a new window beyond the Standard Model.
 ^{*}
- To test calculations of different nuclear shapes and the decay modes that involve the vector and axial-vector weak effective coupling constants; possible study of the "resonant effect" on the 0v2ε mode;
- * The nuclear matrix elements for the 2ν mode and for the 0ν mode can be **related** to each other through relevant parameters: in the free nucleon interaction, **the** g_A value is 1.2701, but, when considering a nuclear decay, there are indications that the phenomenological axial-vector coupling value is reduced at $g_A < 1$, more precisely: $g_A \approx$ 1.269 A^{-0.18} or $g_A \approx$ 1.269 A^{-0.12}, depending on the nuclear model adopted to infer the g_A value.

<u>2β investigation with various nuclei would shed</u> <u>new light in constraining these and other</u> <u>important model-dependent parameters.</u>

$$2\nu 2\beta^{+}: \overline{Z}X \to \overline{Z}_{-2}X + 2e^{+} + 2\nu_{e}$$
L conserved
$$0\nu 2\beta^{+}: \frac{A}{Z}X \to \frac{A}{Z-2}X + 2e^{+}$$
L violated ($\Delta L = 2$) \to massive
Majorana
neutrino
$$0\nu\epsilon\beta^{+}: e^{-} + \frac{A}{Z}X \to \frac{A}{Z-2}X + e^{+} + X$$
-rays
$$0\nu 2\epsilon: e^{-} + e^{-} + \frac{A}{Z}X \to \frac{A}{Z-2}X^{*} \to \frac{A}{Z-2}X + \gamma + X$$
-rays

 $\mathbf{V} + \mathbf{0} + \mathbf{1}$

 $\mathbf{p} \cdot \mathbf{p} \rho + \mathbf{A} \mathbf{V} \cdot \mathbf{A}$

Search for 2β decay in Hf isotopes using passive source approach

HPGe-detector

 $m_{\rm Hf} = 179.8 \, \rm q$ $\emptyset = 59.0 \text{ mm} \times 5.0 \text{mm},$ 225 m underground: **HADES** lab of Joint Research Centre of

European Commission (Geel, Belgium). 75 days.

Hf foil: 0.25(1) mm thick, $m_{Hf} = 55.379(1) g_{,}$ Located underground at LNGS. 310 days.

Section view of the detector and sample (not to scale) with 1) hafnium foils on the top and wrapping the Ge crystal acting as the target and highvoltage contact, 2) copper end cap of 1mm thickness, 3) copper HP-Ge crystal holder, and 4) HP-Ge semi-coaxial p-type crystal.

potentially

2ε,

Interesting in studying rare α decay

Various **theoretical models are continuously developed or improved**, e.g., motivated by searches for stable or long-lived superheavy isotopes and predictions of their half-lives.

The study on the **nuclear instability offers details** about the **nuclear structure**, the nuclear levels and the properties of nuclei.

The phenomenon of α decay can offer information about the **fusion-fission reactions** since the α decay process involves sub-barrier penetration caused by the interaction between the α particle and the nucleus.

Understanding the nuclear properties is essential also for **nuclear and particle astrophysics studies**, for example, α -capture reactions (equivalent to the inverse α -decay process) are important for nucleosynthesis and β -delayed fission, together with other fission modes, determine the so-called "fission recycling" in the r-process nucleosynthesis.

As byproduct: developments of new detectors, e.g., new crystal scintillators containing α emitters.

Search for α decay in Hf isotopes using passive source approach

Search for α decays of the naturally occurring hafnium isotopes to the **first excited levels** of the daughter nuclei. $\rightarrow \frac{\text{de-excitation } \gamma \text{ quanta are emitted, which can be searched for by low-background } \gamma \text{ -ray spectrometry.}$

NPA 1012 (2021) 122212

Decay Isotope	E _γ [keV] (y [%])	Experimental $T_{1/2}$ [a] This work
¹⁷⁴ Hf ¹⁷⁶ Hf ¹⁷⁷ Hf ¹⁷⁸ Hf ¹⁷⁹ Hf ¹⁸⁰ Hf	84.3 (13.7) 78.7 (10.6) 78.6 (12.5) 76.5 (9.6) 104.5 (26.7) 82.1 (12.4)	$\geq 2.8 \times 10^{16} \\ \geq 2.7 \times 10^{17} \\ \geq 1.1 \times 10^{18} \\ \geq 1.3 \times 10^{18} \\ \geq 2.7 \times 10^{18} \\ \geq 4.6 \times 10^{17}$

Eur. Phys. J. A (2020) 56:5

T.P. Kohman, Phys. Rev. 121, 1758 (1961)

Transition	Level of the daughter nucleus (keV)	Experimental $T_{1/2}$ (a)	Theoretical $T_{1/2}$ (a)			
			[8]	[9,10]	[11]	
$^{174}\text{Hf} \rightarrow ^{170}\text{Yb}$	0 ⁺ , g.s.	$= 2.0(4) \times 10^{15} [5]$	$7.4 imes10^{16}$	$3.5 imes 10^{16}$	3.5×10^{16}	
	2+, 84.3	$\geq 3.3 \times 10^{15}$	3.0×10^{18}	1.3×10^{18}	6.6×10^{17}	
$^{176}\text{Hf} \rightarrow ^{172}\text{Yb}$	2+,78.7	$\geq 3.0 \times 10^{17}$	3.5×10^{22}	1.3×10^{22}	$4.9 imes 10^{21}$	
$^{177}\text{Hf} \rightarrow ^{173}\text{Yb}$	7/2-,78.6	$\geq 1.3 \times 10^{18}$	1.2×10^{24}	9.1×10^{21}	3.6×10^{23}	
$^{178}\text{Hf} \rightarrow ^{174}\text{Yb}$	2+, 76.5	$\geq 2.0 \times 10^{17}$	$8.1 imes 10^{25}$	2.4×0^{25}	7.1×10^{24}	
$^{179}\text{Hf} \rightarrow ^{175}\text{Yb}$	(7/2 ⁻), g.s.	$\geq 2.2 \times 10^{18}$	$4.0 imes 10^{32}$	4.4×10^{29}	4.7×10^{31}	
	(9/2)+, 104.5	$\geq 2.2 \times 10^{18}$	2.5×10^{35}	2.0×10^{32}	2.2×10^{34}	
$^{180}\text{Hf} \rightarrow {}^{176}\text{Yb}$	2+, 82.1	$\geq 1.0\times 10^{18}$	$4.1 imes 10^{50}$	$4.0 imes10^{49}$	$2.1 imes 10^{48}$	

LNGS

(4)

Search for α decay in Hf isotopes using active source approach

Schematic cross-sectional view of the experimental set-up (not in scale). There are shown the CHC crystal scintillator (1) coupled with a 3 inches PMT (2), the HP-Ge detector (3), which is separated by a cylindrical Teflon ring (4). They are completely surrounded by a passive shield made by archaeological Roman lead (~ 2.5 cm) (5), high purity copper (~ 5 cm) (6), low radioactive lead (~ 25 cm) (7). The whole set-up (with the exception of the cold finger for the HP-Ge detector) is enclosed in a Plexiglas box (8) continuously flushed with HP-N₂ gas.

The CHC crystal scintillator

Some general properties of CHC crystal scintillators.

Effective atomic number	58
Density (g/cm ³)	3.9
Melting point (°C)	820
Crystal structure	cubic
Wavelength of emission (nm)	400-430
Average decay time (µs)	4–5

It represents one of the promising new scintillating materials for γ spectroscopy also in the field of low-level measurements:

- light output of more than 50000 photons/MeV;
- high energy resolution;
- excellent ability for pulse shape discrimination (PSD) between $\gamma(\beta)$ and α particles;
- It is also the first scintillating material containing a high fraction of Hf (~ 27% in mass) that can be easily produced using the Bridgman growing technique.

Low background measurements of the CHC crystal

NPA 1002 (2020) 121941

Isotopic composition of ^{nat}Hf measured in a sample of the CHC crystal by ICP-MS

Concentrations of trace contaminants in the CHC crystal as measured by ICP-MS analysis. The limits are at 68% C.L.

CHC cry	stal by <mark>I</mark>	CP-MS			=	Nuclide	Concentration (ppb)
Testere	<u> </u>	(07)			_	$^{144}\mathrm{Nd}$	<2.4	4
Isotope	Abuno	ance (%)				$^{147}\mathrm{Sm}$	0.6(1)
$^{174}\mathrm{Hf}$		0.156(6)				$^{148}\mathrm{Sm}$	0.4(1]
$^{176}\mathrm{Hf}$		5.18(5)				151 Eu	19(7))
177 H f		18 5(1)				$^{152}\mathrm{Gd}$	< 0.02	2
178110		10.0(1)				^{180}W	< 0.4	4
¹ ^o Ht		27.2(1)				184Os	< 0.003	3
$^{179}{ m Hf}$		13.9(1)				$^{186}\mathrm{Os}$	< 0.2	5
$^{180}{ m Hf}$		35.2(2)				$^{190}\mathrm{Pt}$	< 0.02	2
						$^{209}\mathrm{Bi}$	<:	2
					=			
	Nuclide	Q_{α}	T _{1/2}	Isotopic	E_{α}	Expected	l Counts	
		(keV)	<u>(y)</u>	Abundance	(keV)	in the R	OI (see	
		10	10	(%) 2		later)		
	¹⁴⁴ Nd	1906.4(17)	$2.29(16) \times 10^{15}$	23.798(19)	1854.8(17)	< 0.0	07	
	^{147}Sm	2311.2(10)	$1.060(11) \times 10^{11}$	15.00(14)	2249.9(10)	36(6	6)	
	^{148}Sm	1986.9(10)	$7(3) \times 10^{15}$	11.25(9)	1934.6(10)	$3.6(1) \times$	(10^{-4})	
	^{152}Gd	2204.4(10) [11]	$1.08(8) \times 10^{14}$	0.20(3)	2147.8(10)	$< 1 \times 1$	10^{-3}	
	^{186}Os	2820.4(13)	$2.0(11) \times 10^{15}$	1.59(64)	2761.0(13)	$< 6 \times 1$	10^{-4}	
	¹⁹⁰ Pt	3252.6(6)	$6.5(3) \times 10^{11}$	0.012(2)	3185.5(6)	< 0.	.1	
	²⁰⁹ Bi	3137.3(8)	$2.01(8) \times 10^{19}$	100	3078.4(8)	$< 4 \times 1$	10^{-7}	

Low background measurements of the CHC crystal

NPA 1002 (2020) 121941

Chain	Nuclide	Activity (mBq/kg)
	$^{40}\mathrm{K}$	$0.4(1) \times 10^3$
	⁴⁴ Ti	10(4)
	60 Co	$<\!25$
	^{137}Cs	$0.74(8) \times 10^3$
	^{132}Cs	<15
	^{134}Cs	79(8)
	$^{181}\mathrm{Hf}$	<11
	190 Pt	<20
	^{202}Pb	< 9.1
²³² Th	228 Ra	<12
	$^{228}\mathrm{Th}$	<3.6
$^{238}\mathrm{U}$	226 Ra	<23
	234 Th	< 0.80
	234m Pa	< 0.48
$^{235}\mathrm{U}$	$^{235}\mathrm{U}$	<14

Radioactive contaminations of the CHC crystal measured with the ultra-low background **HP-Ge** γ spectrometer GeCris of the **STELLA** facility at LNGS.

The spectra of β/γ and α events selected by PSD analysis.

Data analysis

Time-amplitude analysis of ²²⁸Th sub-chain and the derived Q.F.

[4] C. Cardenas, et al.,
Nucl. Instrum. Methods A
869 (2017) 63.
[25] V.I. Tretyak, Astropart.
Phys. 33 (2010) 40.

Pulse Shape Discrimination (PSD) based on the pulse mean-time

The time-amplitude analysis was used to select the events of the following decay sub-chain of the ²³²Th family: ²²⁴Ra (Q = 5789 keV; $T_{1/2}$ = 3.66 d) \rightarrow ²²⁰Rn (Q = 6405 keV; $T_{1/2}$ = 55.6 s) \rightarrow ²¹⁶Po (Q = 6906 keV; $T_{1/2}$ = 0.145 s) \rightarrow ²¹²Pb.

The energies of the peaks of ²²⁴Ra, ²²⁰Rn and ²¹⁶Po, selected by the described time-amplitude analysis, are **2260(200) keV**, **2540(200) keV**, **2780(240) keV** (γ scale), respectively.

Results on the decay of naturally occurring Hf isotopes

NPA 1002 (2020) 121941

Considering all α events, the total internal α activity in the CHC crystal is at the level of **7.8(3) mBq/kg.**

Chain	Sub-Chain	Activity (mBq/kg)
$^{232}\mathrm{Th}$	232 Th	0.2(1)
	228 Th	0.2(1)
$^{238}\mathrm{U}$	$^{238}\mathrm{U}$	0.6(1)
	$^{234}\text{U} + ^{230}\text{Th}$	1.4(2)
	226 Ra	0.2(1)
	²¹⁰ Po	1.4(2)

In the hypothesis of the **half-life** of **1961** (T.P. Kohman, Phys. Rev. 121, 1758) **2.0(4)x10¹⁵ y** for the ¹⁷⁴Hf decay, the expected number of events (**2848** h of data taking) is about **1100** counts.

even ascribing all of them to 174 Hf decay, one can safely rule out the old result for the T_{1/2}

553(23) in total

Results on the decay of naturally occurring Hf isotopes

The **background model** in the energy interval (1.1 – 3.9) MeV is made by an exponential function (to describe residual β/γ events), and suitable asym-Gaussian functions to describe the α decay of ¹⁴⁷Sm ($Q_{\alpha} = 2311.2(10)$ keV), ¹⁷⁴Hf ($Q_{\alpha} = 2494.5(2.3)$ keV) and the events in the energy range (3.0-3.9) MeV. These events have been assumed to be degraded α events from possible surface and other contamination.

The counts for the peak near 2.3 MeV are **29.5(5.4)** in very good agreement with that expected for ¹⁴⁷Sm.

Half-lives on the α decay of Hf isotopes

(All the limits are given at 90% C.L.)

NPA 1002 (2020) 121941

Nuclide transition	Parent, daughter nuclei and its	T _{1/2} (y)					[6] T.P. Kohman, Phys. Rev. 121, 1758 (<mark>1961</mark>)	
energy level		Experimental		Theoretical				
	(KeV)	present work	previous works [10]	[7]	[8]	[9]	[/] B. Buck, A.C. Merchant,	
$^{174}\mathrm{Hf} ightarrow ^{170}\mathrm{Yb}$	$0^+ \to 0^+, \text{ g.s.}$ $0^+ \to 2^+, 84.3$	$7.0 \pm 1.2 \times 10^{16} \\ \ge 1.1 \times 10^{15}$	$2.0 \pm 0.4 \times 10^{15} \ [6.13]$ $\geqslant 3.3 \times 10^{15}$	$3.5 \cdot 10^{16}$ $1.3 \cdot 10^{18}$	7.4×10^{16} 3.0×10^{18}	3.5×10^{16} 6.6×10^{17}	(1991) 1223.	
$^{176}\mathrm{Hf} \rightarrow ^{172}\mathrm{Yb}$	$0^+ \to 0^+, \text{ g.s.}$ $0^+ \to 2^+, 78.7$	$ \geqslant 9.3 \times 10^{19} \\ \geqslant 1.8 \times 10^{16} $	$\stackrel{-}{\geq} 3.0 \times 10^{17}$	2.5×10^{20} 1.3×10^{22}	6.6×10^{20} 3.5×10^{22}	2.0×10^{20} 4.9×10^{21}	[8] D.N. Poenaru, M. Ivascu, J. Phys. 44 (1983) 791.	
$^{177}\text{Hf} \rightarrow ^{173}\text{Yb}$	$7/2^- \rightarrow 5/2^-$, g.s. $7/2^- \rightarrow 7/2^-$, 78.6	$ \geqslant 3.2 \times 10^{20} \\ \geqslant 7.5 \times 10^{16} $	\geqslant 1.3 × 10 ¹⁸	$\begin{array}{l} 4.5 \times 10^{20} \\ 9.1 \times 10^{21} \end{array}$	5.2×10^{22} 1.2×10^{24}	4.4×10^{22} 3.6×10^{23}	[9] V.Yu. Denisov, O.I. Davidovskaya, I.Yu. Sedykh,	
$^{178}\mathrm{Hf} ightarrow ^{174}\mathrm{Yb}$	$0^+ \to 0^+, \text{ g.s.}$ $0^+ \to 2^+, 76.5$	$ \geqslant 5.8 \times 10^{19} \\ \geqslant 6.9 \times 10^{16} $	\geq 2.0 × 10 ¹⁷	3.4×10^{23} 2.4×10^{25}	1.1×10^{24} 8.1×10^{25}	2.2×10^{23} 7.1×10^{24}	Phys. Rev. C 92 (2015) 014602.	
$^{179}\text{Hf} \rightarrow ^{175}\text{Yb}$	$9/2^+ \rightarrow 7/2^+$, g.s. $9/2^+ \rightarrow 9/2^+$, 104.5	$ \geqslant 2.5 \times 10^{20} \\ \geqslant 5.5 \times 10^{17} $	$ \geqslant 2.2 \times 10^{18} \\ \geqslant 2.2 \times 10^{18} $	4.5×10^{29} 2.0×10^{32}	4.0×10^{32} 2.5×10^{35}	4.7×10^{31} 2.2×10^{34}	Phys. J. A 56 (5) (2020).	
$^{180}\mathrm{Hf} \rightarrow ^{176}\mathrm{Yb}$	$9/2^+ \rightarrow 7/2^+$, g.s. $9/2^+ \rightarrow 9/2^+$, 82.1	-	$\geqslant 1.0 \times 10^{18}$	6.4×10^{45} 4.0×10^{49}	5.7×10^{46} 4.1×10^{50}	9.2×10^{44} 2.1×10^{48}		

Perspectives and conclusions

- An experiment to measure low-level radioactive contaminants of a CHC crystal scintillator has been carried out at the STELLA facility at the LNGS.
- > The results on rare nuclear transitions in Hf isotopes have led to rule out the $T_{1/2}$ value of the α decay of ¹⁷⁴Hf given in literature. In particular, we found that the α decay of ¹⁷⁴Hf to the ground state has been definitely observed with a $T_{1/2} =$ **7.0(1.2) x 10¹⁶ y**. This value is in good agreement with the theoretical predictions.
- New lower limits of the half-life for 2ε and εβ⁺ decay of ¹⁷⁴Hf (10¹⁶-10¹⁸ y) have been set.
- New lower limits of the half-life for α decay of ¹⁷⁴Hf to the first excited state and for α decays of ¹⁷⁶Hf, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf either to the ground states or to the first excited levels of daughter nuclides (**10¹⁶-10²⁰ y**) have been set.
- Four CHC detectors, already at hand, will be fully characterized in the incoming months.
- ► The expected results after 1 year of data taking of the four detectors will allow higher accuracy for the half-life of ¹⁷⁴Hf, α decay, of the order of 2.5%. Moreover, the sensitivity for the discovery of the α decay of the ¹⁷⁶Hf, ¹⁷⁷Hf isotopes will reach T_{1/2}~6.5×10²⁰ yr and 2.2×10²¹ yr, well within the theoretical expectations reported in the previous table.
- In addition, these measurements will also be able to probe the α decay of the other Hf isotopes (¹⁷⁹Hf, ¹⁸⁰Hf).

- The blue band is the extrapolation of the predictions on T_{1/2} for all the Hf isotopes using the Geiger-Nuttall scaling law considering the data point observed in Ref. NPA 1002 (2020) 121941.
- The red symbols represent the sensitivity that the measurement can reach using CHC crystal scintillators with 43.83 kg × day of total exposure. As evident, there is a good perspective to observe the α decay of ¹⁷⁶Hf and ¹⁷⁷Hf.