Search for α and 2 β decays of naturally occurring osmium nuclides accompanied by γ quanta

<u>V. Caracciolo^{1,2}</u>, P. Belli^{1,2}, R. Bernabei^{1,2}, F. Cappella^{3,4}, R. Cerulli^{1,2}, F. A. Danevich^{2,5},
A. Incicchitti^{3,4}, D. V. Kasperovych⁵, V. V. Kobychev⁵, G. P. Kovtun^{6,7,†}, N. G. Kovtun⁶,
A. Leoncini^{1,2}, M. Laubenstein⁸, V. Merlo^{1,2}, D. V. Poda⁹, O. G. Polischuk^{1,5}, A. P. Shcherban⁶, S. Tessalina¹⁰ and V. I. Tretyak^{5,11}

1 Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy

2 INFN, sezione di Roma Tor Vergata, Rome, Italy

3 INFN, sezione di Roma, Rome, Italy

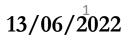
4 Dipartimento di Fisica, Università di Roma 'La Sapienza', Rome, Italy

5 Institute for Nuclear Research of NASU, Kyiv, Ukraine

6 National Science Center 'Kharkiv Institute of Physics and Technology', Kharkiv, Ukraine

7 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

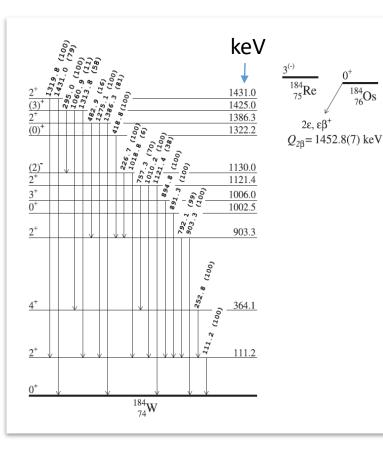
8 INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy

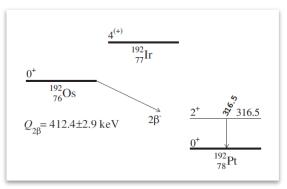

9 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

10 John de Laeter Centre for Isotope Research, Curtin University, Bentley, WA, Australia

11 Dipartimento di Fisica e Chimica, Università dell'Aquila, L'Aquila, Italy

† Deceased


MEDEX 2022



INTEREST IN STUDYING THE 34 DBD+ EMITTERS

- DBD modes without the emission of neutrinos, if observed, can open windows on new physics
- to test calculations of different nucleus shapes and decay modes that involve the vector and axial-vector weak effective coupling constants; possibility to study the "resonant effect" on the 0v2ε mode;
- mutual information from the simultaneous study of positive and negative DBD can constrain the theoretical parameters with very high confidence
- the nuclear matrix elements for the two-neutrino mode and for the **neutrinoless** mode can be **related** to each other through relevant parameters: in the **free nucleon interaction, the** g_A value is **1.2701**, but, when considering a nuclear decay, there are indications that the phenomenological axial-vector coupling value is reduced at $g_A < 1$, more precisely: $g_A \approx 1.269 \text{ A}^{-0.18}$ or $g_A \approx 1.269 \text{ A}^{-0.12}$, depending on the nuclear model adopted to infer the g_A value. DBD investigation with various nuclei would shed new light in constraining these and other important model-dependent parameters.
- search for the $OnEC\beta^+$ and $On2\beta^+$ decays has the potential to clarify the possible contribution of the right-handed currents to the $On2\beta^-$ decay rate
- As byproduct: developments of new detectors or radiopure samples, e.g., new crystal scintillators containing DBD emitters

Double-beta decay of osmium

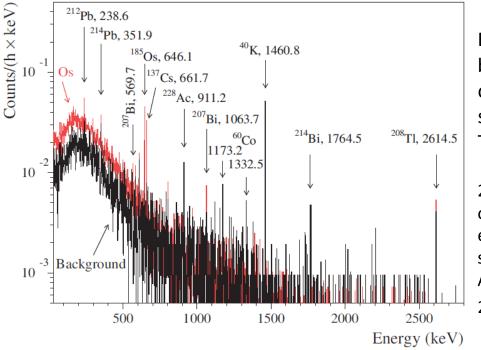
Osmium contains two potentially 2β active isotopes:

lsotope	Q [keV]	isotopic abundance [%]	Transition
¹⁸⁴ Os	1452.8(7)	0.02(1)	2ε, εβ+
¹⁹² Os	406(3)	40.78(32)	2β-

(¹⁸⁴Os) Main possible processes that can be investigated by γ spectrometer technique (partial list)

Process	Decay mode	Level of daughter nucleus	E_{γ}	
of decay				
		(keV)	(keV)	
$^{184}\mathrm{Os}~\rightarrow ^{184}\mathrm{W}$				
$\epsilon \beta^+$	2ν	g.s.	511	
$\varepsilon \beta^+$	0ν	g.s.	511	
$\varepsilon \beta^+$	2ν	2^+ 111.2	511	
$\epsilon \beta^+$	0ν	2^+ 111.2	511	
2K	2ν	g.s.	58-69	
2ε	2ν	2^+ 111.2	111.2	
2ε	2ν	2^+ 903.3	903.3	
2ε	2ν	0^+ 1002.5	891.3	
2ε	2ν	2^+ 1121.4	757.3	
2K	0ν	g.s.	1314.1 - 1315.3	
KL	0ν	g.s.	1371.5 - 1374.7	
2L	0ν	g.s.	1428.9 - 1433.9	
2K	0ν	$2^+ 111.2$	1202.9 - 1204.1	
2ε	0ν	2^+ 903.3	903.3	
2ε	0ν	0^+ 1002.5	891.3	
2ε	0ν	2^+ 1121.4	757.3	

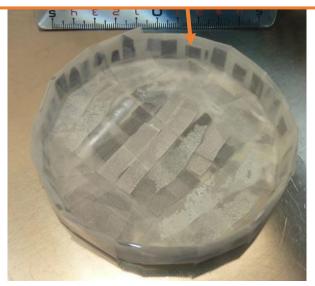
 $\Delta = Q_{2\beta} - E^* - E_{\rm b1} - E_{\rm b2}$


We can also consider the resonant-0v2 ϵ : 0v2L: ¹⁸⁴Os \rightarrow ¹⁸⁴W, (2⁺, 1431.0 keV)

Eur. Phys. J. A (2013)49:24

The experiment has been realized with the help of an ultra-low background **HP-Ge** detector (465 cm³) and an ultrapure osmium sample (**173 g**, 99.999% purity) at the Gran Sasso National Laboratory of the INFN (Italy).

The detector is shielded by lead (≈ 25 cm) and copper (≈ 10 cm). The FWHM energy resolution of the spectrometer is 2.0 keV for the 1333 keV γ quanta of ⁶⁰Co



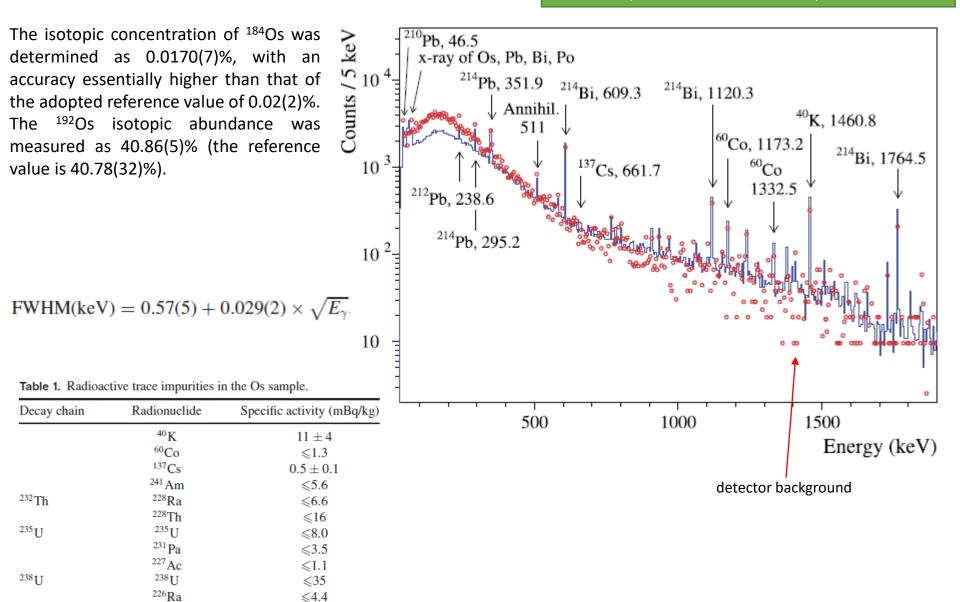
Energy spectra measured with the ultralow background HPGe γ spectrometer with the osmium sample over 2741 h (Os) and without the sample over 1046 h (Background). The energies of the γ lines are in keV.

 2β processes in ¹⁸⁴Os have been established at the level of limits on $T_{1/2} \sim 10^{14} - 10^{17}$ y. Possible resonant doubleelectron captures in ¹⁸⁴Os were searched for with a sensitivity of $T_{1/2} \sim 10^{16}$ y. A half-life limit $T_{1/2} \geq 5.3 \times 10^{19}$ y (90% C.L.) was set for the 2β decay of ¹⁹²Os to the first excited level of ¹⁹²Pt.

The ingots were cut into thin slices with a thickness of (0.79–1.25) mm by electroerosion cutting with a brass wire in kerosene.

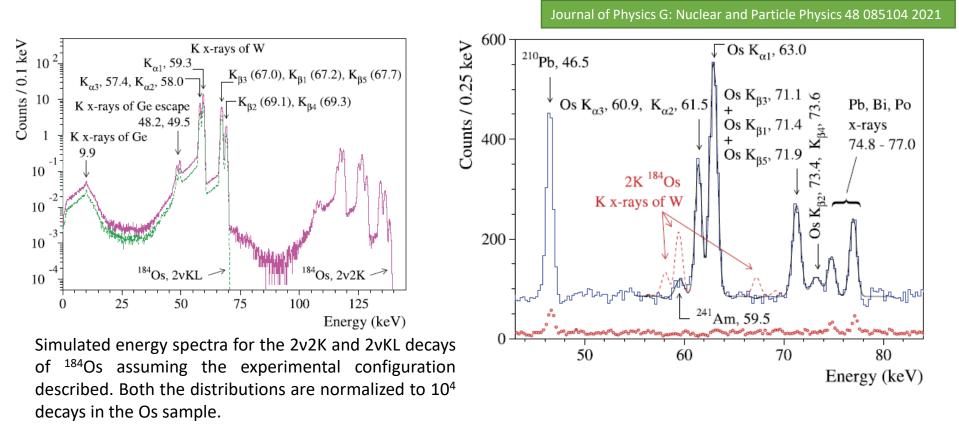
Journal of Physics G: Nuclear and Particle Physics 48 085104 2021

The experiment has been realized with the help of an ultra-low background broad-energy germanium detector (**112.5 cm³** of active volume) and an ultrapure **osmium sample (117.96(2) g)** at the **Gran Sasso National Laboratory of the INFN (Italy)**.



The endcap of the detector is made of 1.5 mm aluminium

The detector with the Os sample was shielded by layers of ≈5 cm thick high-purity copper and 20 cm thick lead.


Improved detection efficiencies and energy resolutions in the energy region from several keV to several hundreds keV.

Journal of Physics G: Nuclear and Particle Physics 48 085104 2021

²¹⁰Pb

≤180

The fastest decay of ¹⁸⁴Os is theoretically expected to be the 2v2EC, mainly absorbing the K and/or L electron shells. In case of 2v2K, 2vKL, and 2v2L capture in ¹⁸⁴Os, a cascade of x-rays and Auger electrons of the W atom is expected. However, the 2v2L decay cannot be detected in the present experiment since the energies of the L x-rays of tungsten (7.4 keV–11.7 keV) are below the detector's energy threshold

$$\lim T_{1/2} = \frac{N \cdot \ln 2 \cdot \eta \cdot t}{\lim S}$$

Table 2. Half-life limits on 2β processes in ¹⁸⁴Os and ¹⁹²Os.

Journal of Physics G: Nuclear and Particle Physics 48 085104 2021

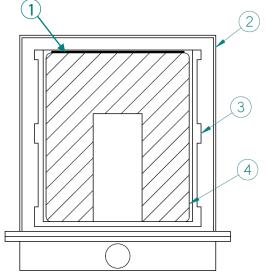
1

Transition	Level of daughter nucleus (keV)	E_{γ} (keV)	Detection efficiency	lim S	Experimental lin Present work	hits, $T_{1/2}$ (yr) at 90% C.L. Previous result [28]
			$^{184}Os \rightarrow ^{184}W$		/	(first configuration)
$2\nu 2K$	g.s.	57-69	2.911%	78	${\geqslant}3.0\times10^{16}$	$\geqslant 1.9 imes 10^{14}$
$2\nu KL$	g.s.	57-69	1.635%	65	$\geqslant 2.0 imes 10^{16}$	
$2\nu 2K$	2+111.2	57-69	3.487%	78	\geq 3.6 \times 10 ¹⁶	$\geq 3.1 \times 10^{15}$
$2\nu KL$	2+111.2	57-69	1.959%	65	$\geqslant 2.4 \times 10^{16}$	$\geq 3.1 \times 10^{15}$
$2\nu 2EC$	2+111.2	111.2	0.340%	37	\geq 7.3 \times 10 ¹⁵	$\geq 3.1 \times 10^{15}$
$2\nu 2EC$	2+903.3	903.3	1.230%	4.9	$\geq 2.0 \times 10^{17}$	$\geqslant 3.2 imes 10^{16}$
$2\nu 2EC$	0+1002.5	891.3	2.397%	6.8	\geq 2.8 \times 10 ¹⁷	\geqslant 3.8 \times 10 ¹⁷
$2\nu 2EC$	2+1121.4	757.3	0.802%	6.2	$\geqslant 1.0 imes 10^{17}$	$\geq 6.9 \times 10^{16}$
$2\nu KL$	$(0^+)1322.2$	903.3	1.056%	4.9	$\geq 1.7 \times 10^{17}$	
$2\nu 2L$	2+1386.3	1275.1	0.967%	26	$\geq 3.0 \times 10^{16}$	
$2\nu 2L$	$(3)^+1425.0$	903.3	0.518%	4.9	\geq 8.4 \times 10 ¹⁶	
$2\nu 2L$	2+1431.0	1319.8	1.002%	18	\geq 4.4 × 10 ¹⁶	
$0\nu 2K$	g.s.	1313.1-1314.5	1.838%	9.0	\geq 1.6 × 10 ¹⁷	$\geqslant 2.0 imes 10^{17}$
$0\nu KL$	g.s.	1370.5-1373.8	1.827%	11	\geq 1.3 \times 10 ¹⁷	$\geq 1.3 \times 10^{17}$
$0\nu 2L$	g.s.	1427.9-1433.1	1.833%	20	\geq 7.3 × 10 ¹⁶	$\geq 1.4 \times 10^{17}$
$0\nu 2K$	2+ 111.2	1201.9-1203.3	1.911%	20	\geqslant 7.6 × 10 ¹⁶	\geqslant 3.3 \times 10 ¹⁷
$0\nu KL$	2^+ 111.2	57-69	1.584%	65	$\geqslant 1.9 \times 10^{16}$	
$0\nu 2EC$	2+ 903.3	903.3	1.019%	4.9	$\geq 1.7 \times 10^{17}$	$\geqslant 2.8 \times 10^{16}$
$0\nu 2EC$	0+ 1002.5	310.6-312.0	3.773%	14	$\geqslant 2.1 \times 10^{17}$	$\geq 3.5 \times 10^{17}$
$0\nu 2EC$	2+ 1121.4	757.3	0.736%	6.2	$\geq 9.4 \times 10^{16}$	$\geq 6.4 \times 10^{16}$
0ν KL	$(0)^+ 1322.2$	903.3	1.045%	4.9	\geq 1.7 \times 10 ¹⁷	$\geqslant 2.8 imes 10^{16}$
$0\nu 2L$	2+ 1386.3	1275.1	0.966%	26	\geq 3.0 \times 10 ¹⁶	$\geq 6.7 \times 10^{16}$
$0\nu 2L$	(3)+1425.0	903.3	0.517%	4.9	\geqslant 8.4 \times 10 ¹⁶	-

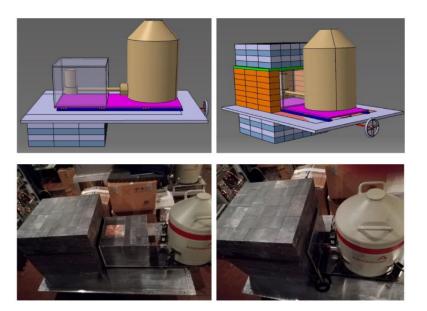
Table 2. Half-life limits on 2β processes in ¹⁸⁴Os and ¹⁹²Os.

Journal of Physics G: Nuclear and Particle Physics 48 085104 2021

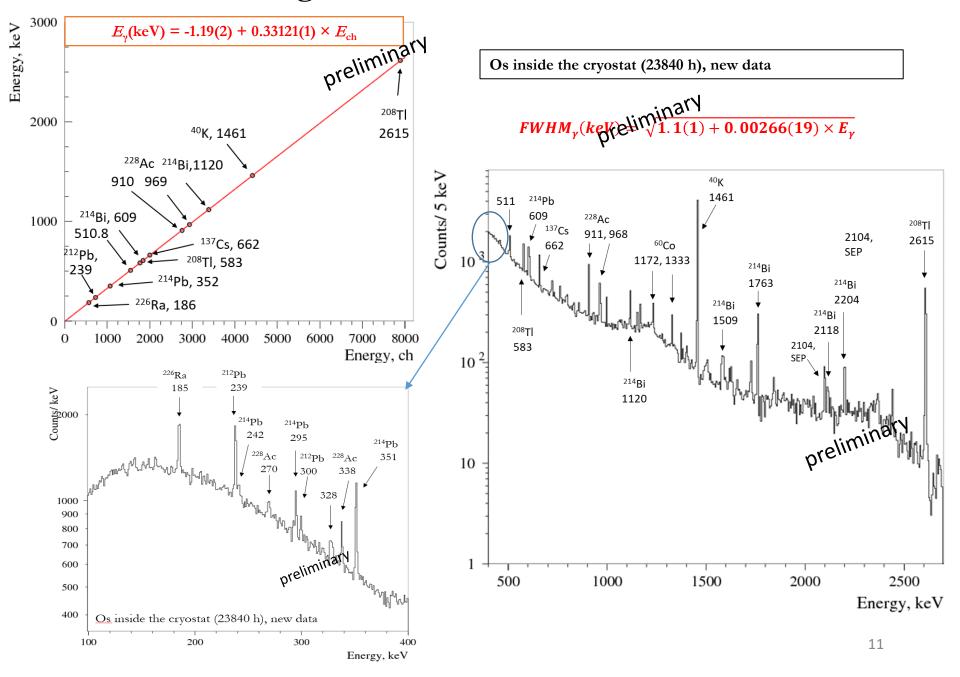
1


Transition	Level of daughter nucleus (keV)	E_{γ} (keV)	Detection efficiency	lim S	Experimental limits Present work	s, $T_{1/2}$ (yr) at 90% C.L. Previous result [28]
Trumbition .	Dever of daughter hacieus (kev)	L_{γ} (no r)		linto		(first configuration)
		57 (0)	$^{184}\text{Os} \rightarrow ^{184}\text{W}$			
$2\nu 2K$	g.s.	57-69	2.911%	78	$\geq 3.0 \times 10^{16}$	${\geqslant}1.9\times10^{14}$
$2\nu KL$	g.s.	57-69	1.635%	65	$\geq 2.0 \times 10^{16}$	× 2 4 4015
$2\nu 2K$	2+111.2	57-69	3.487%	78	$\geq 3.6 \times 10^{16}$	$\geq 3.1 \times 10^{15}$
$2\nu KL$	2+111.2	57-69	1.959%	65	$\geq 2.4 \times 10^{16}$	$\geq 3.1 \times 10^{15}$
$2\nu 2EC$	2+111.2	111.2	0.340%	37	$\geq 7.3 \times 10^{15}$	$\geq 3.1 \times 10^{15}$
$2\nu 2EC$	2+903.3	903.3	1.230%	4.9	$\geq 2.0 \times 10^{17}$	$\geq 3.2 \times 10^{16}$
$2\nu 2EC$	$0^+1002.5$	891.3	2.397%	6.8	$\geqslant 2.8 imes 10^{17}$	$\geqslant 3.8 \times 10^{17}$
$2\nu 2EC$	2+1121.4	757.3	0.802%	6.2	$\geqslant 1.0 imes 10^{17}$	$\geqslant 6.9 imes 10^{16}$
$2\nu KL$	$(0^+)1322.2$	903.3	1.056%	4.9	$\geqslant 1.7 \times 10^{17}$	
$2\nu 2L$	2+1386.3	1275.1	0.967%	26	$\geqslant 3.0 imes 10^{16}$	
$2\nu 2L$	(3)+1425.0	903.3	0.518%	4.9	\geqslant $8.4 imes 10^{16}$	
$2\nu 2L$	2+1431.0	1319.8	1.002%	18	\geqslant 4.4 \times 10 ¹⁶	
$0\nu 2K$	g.s.	1313.1-1314.5	1.838%	9.0	$\geqslant 1.6 \times 10^{17}$	$\geqslant 2.0 imes 10^{17}$
$0\nu KL$	g.s.	1370.5-1373.8	1.827%	11	\geqslant 1.3 \times 10 ¹⁷	$\geqslant 1.3 \times 10^{17}$
$0\nu 2L$	g.s.	1427.9-1433.1	1.833%	20	\geqslant 7.3 × 10 ¹⁶	$\geqslant 1.4 \times 10^{17}$
$0\nu 2K$	2^+ 111.2 2^+ 111.2	1201.9-1203.3	1.911%	20	$\geq 7.6 \times 10^{16}$	$\geqslant 3.3 imes 10^{17}$
	Table 2. Continue					
Resonant $0\nu 2$	2L 2 ⁺ 1431.0	1319.8	1.005%	18	${\geqslant}4.4\times10^{16}$	$\geqslant 8.2 imes 10^{16}$
$2\nu EC\beta^+$	g.s.	511	7.526%	58	$\geqslant 1.0 \times 10^{17}$	$\geqslant 2.5 imes 10^{16}$
$2\nu EC\beta^+$	2+111.2	511	7.271%	58	$\geq 1.0 \times 10^{17}$	$\geqslant 2.5 imes 10^{16}$
$0\nu EC\beta^+$	g.s.	511	7.403%	58	$\geq 1.0 \times 10^{17}$	$\geqslant 2.5 \times 10^{16}$
$0\nu EC\beta^+$	2+111.2	511	7.191%	58	\geqslant 9.9 \times 10 ¹⁶	\geqslant 2.4 \times 10 ¹⁶
		1	$^{192}\text{Os} \rightarrow {}^{192}\text{Pt}$			
$2\beta^{-}(2\nu + 0\iota)$	ν) 2 ⁺ 316.5	316.5	4.820%	45	$\geqslant 2.0 imes 10^{20}$	\geqslant 5.3 \times 10 ¹⁹

Present configuration of the experiment with Os

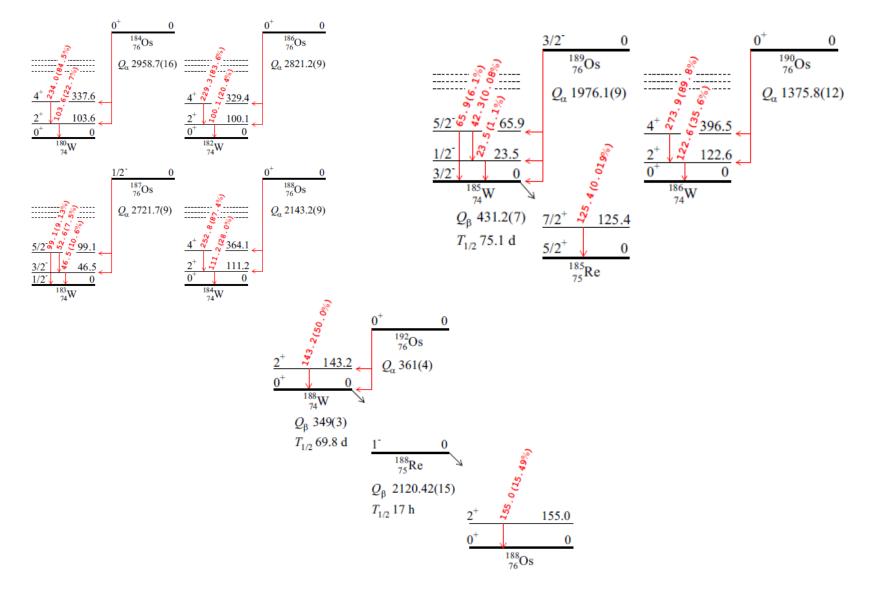


Osmium metal pieces **(58.78 g)** glued to the plastic plate have been placed inside the HP-Ge detector cryostat directly on the Ge crystal **(250 cm³ of active volume)** at LNGS.


The main part of the osmium slices before assembling on a plastic support plate placed directly in the HP-Ge cryostat

1) sample; 2) detector end cap; 3) crystal holder; 4) Ge crystal

Present configuration: first look at the collected data



INTEREST IN STUDYING RARE C DECAY

- Various **theoretical models are continuously developed or improved**, e.g., motivated by • searches for stable or long-lived superheavy isotopes and predictions of their half-lives.
- The study on the **nuclear instability offers information** about the **nuclear structure**, its ٠ levels and the properties of nuclei.
- The phenomenon of α decay can offer information about the **fusion-fission reactions** ٠ since the α decay process involves sub-barrier penetration of α particles through the barrier, caused by the interaction between the α and the nucleus
- Understanding the nuclear properties is essential also for nuclear and particle ٠ astrophysics studies, for example, α -capture reactions (equivalent to the inverse α -decay process) are important for the **nucleosynthesis** and the β -delayed fission, together with other fission modes, determine the so-called "fission recycling" in the r-process nucleosynthesis.
- Among the naturally occurring α -emitting nuclides only those with either A > 208 or A \approx ٠ 145 have α half-lives short enough to be detected
- As byproduct: developments of new detectors or radiopure samples, e.g., new crystal ٠ scintillators containing α emitters 12

Rare alpha decay of Osmium

Some possible processes that can be investigated by γ spectrometer technique

Rare alpha decay of Osmium (second experimental stage)

PHYSICAL REVIEW C 102, 024605 (2020)

	$O_{\rm c}$ (here)	Partial $T_{1/2}$ (yr)				
	Q_{α} (keV)	Theoretical				
Transition, J^{π} , E (keV)	[22]	[23]	[24,25]	[5]	[11]	Experimental
184 Os, $0^+ \rightarrow {}^{180}$ W, 0^+ , g.s.	2958.7(16)	7.2×10^{13}	$3.5 imes 10^{13}$	$3.3 imes 10^{13}$	$2.1 imes 10^{13}$	$>2.0 \times 10^{13}$ [17]
						$>5.6 \times 10^{13}$ [19] = (1.1 ± 0.2) × 10 ¹³ [20]
184 Os, $0^+ \rightarrow {}^{180}$ W, 2^+ , 103.6		2.9×10^{15}	1.3×10^{15}	6.3×10^{14}	7.3×10^{14}	$\geq 6.8 \times 10^{15}$ this work
$^{184}\text{Os}, 0^+ \rightarrow {}^{180}\text{W}, 4^+, 337.6$		$2.5 imes 10^{19}$	$1.0 imes 10^{19}$	$9.2 imes 10^{17}$	$4.6 imes 10^{18}$	$\geq 4.6 \times 10^{16}$ this work
186 Os, $0^+ \rightarrow {}^{182}$ W, 0^+ , g.s.	2821.2(9)	4.7×10^{15}	1.9×10^{15}	1.6×10^{15}	1.0×10^{15}	$= (2.0 \pm 1.1) \times 10^{15}$ [21]
$^{186}\text{Os}, 0^+ \rightarrow {}^{182}\text{W}, 2^+, 100.1$		2.2×10^{17}	8.3×10^{16}	3.3×10^{16}	3.9×10^{16}	$\geq 3.3 \times 10^{17}$ this work
186 Os, $0^+ \rightarrow {}^{182}$ W, 4^+ , 329.4		2.9×10^{21}	9.7×10^{20}	$7.2 imes 10^{19}$	3.7×10^{20}	$\geq 6.0 \times 10^{18}$ this work
187 Os, $1/2^- \rightarrow {}^{183}$ W, $1/2^-$, g.s.	2721.7(9)	4.5×10^{19}	4.1×10^{16}	$5.1 imes 10^{16}$	2.0×10^{16}	_
187 Os, $1/2^- \rightarrow {}^{183}$ W, $3/2^-$, 46.5		$4.4 imes 10^{20}$	3.6×10^{17}	$6.7 imes 10^{18}$	1.6×10^{17}	$\geq 3.2 \times 10^{15}$ this work
187 Os, $1/2^- \rightarrow {}^{183}$ W, $5/2^-$, 99.1		2.8×10^{21}	2.1×10^{18}	$4.0 imes 10^{19}$	9.1×10^{17}	$\geq 1.9 \times 10^{17}$ this work
188 Os, $0^+ \rightarrow {}^{184}$ W, 0^+ , g.s.	2143.2(9)	6.8×10^{26}	1.4×10^{26}	7.2×10^{25}	5.2×10^{25}	-
188 Os, $0^+ \rightarrow {}^{184}$ W, 2^+ , 111.2		2.9×10^{29}	5.5×10^{28}	1.3×10^{28}		$\geq 3.3 \times 10^{18}$ this work
188 Os, $0^+ \rightarrow {}^{184}$ W, 4^+ , 364.1		1.9×10^{36}	2.7×10^{35}	8.9×10^{33}		$\geq 5.0 \times 10^{19}$ this work
189 Os, $3/2^- \rightarrow {}^{185}$ W, $3/2^-$, g.s.	1976.1(9)	2.4×10^{34}	4.8×10^{29}	3.1×10^{29}		$\geq 3.5 \times 10^{15}$ this work
$^{189}\text{Os}, 3/2^- \rightarrow {}^{185}\text{W}, 1/2^-, 23.5$		1.8×10^{35}	3.2×10^{30}	1.1×10^{32}		$\geq 3.5 \times 10^{15}$ this work
189 Os, $3/2^- \rightarrow {}^{185}$ W, $5/2^-$, 65.9		2.1×10^{36}	3.1×10^{31}	1.1×10^{33}		$\geq 7.6 \times 10^{17}$ this work
190 Os, $0^+ \rightarrow {}^{186}$ W, 0^+ , g.s.	1375.8(12)	$3.6 imes 10^{48}$	2.0×10^{47}	$2.1 imes 10^{46}$		_
190 Os, $0^+ \rightarrow {}^{186}$ W, 2^+ , 122.6		1.1×10^{54}	4.9×10^{52}	1.6×10^{51}		$\geq 1.2 \times 10^{19}$ this work
190 Os, 0 ⁺ \rightarrow 186 W, 4 ⁺ , 396.5		5.8×10^{69}	1.1×10^{68}	1.6×10^{65}		\geq 8.6 × 10 ¹⁹ this work
192 Os, $0^+ \rightarrow {}^{188}$ W, 0^+ , g.s.	361(4)	1.7×10^{153}	$1.8 imes 10^{149}$	$1.4 imes 10^{140}$		$\geq 5.8 \times 10^{18}$ this work
192 Os, 0 ⁺ \rightarrow 188 W, 2 ⁺ , 143.2		$1.6 imes 10^{215}$	$5.5 imes 10^{209}$	9.9×10^{190}		$\geq 2.7 \times 10^{19}$ this work

Conclusions

$\textbf{2}\beta \text{ decays}$

Using a ultra-pure osmium samples installed on the endcap of a ultra-lowbackground broad-energy germanium detectors, new limits on double-electron capture and electron capture with positron emission in ¹⁸⁴Os were set at the level of $T_{1/2} > 10^{16}-10^{17}$ yr.

In particular the **2v2K** and **2vKL** decays of ¹⁸⁴Os to the g.s. of ¹⁸⁴W are restricted as $T_{1/2} > 3.0 \times 10^{16}$ yr and $T_{1/2} > 2.0 \times 10^{16}$ yr, respectively.

A lower limit on the half-life for the double-beta decay of ^{192}Os to the first excited level of ^{192}Pt was set as $T^{1/2} > 2.0 \times 10^{20}$ yr at 90% C.L.

α decays

Lower limits on the processes were set at level of $T_{1/2} > 10^{15} - 10^{19}$ yr.

The half-life limits for α decays of ¹⁸⁴Os and ¹⁸⁶Os to the first excited levels of daughter nuclei have been set at 90% C.L. as $T_{1/2} > 6.8 \times 10^{15}$ yr and $T_{1/2} > 3.3 \times 10^{17}$ yr, respectively. The limits exceed substantially the present theoretical estimations of the decays probabilities that are within $T_{1/2} \approx (0.6-3) \times 10^{15}$ yr for ¹⁸⁴Os and $T_{1/2} \approx (0.3-2) \times 10^{17}$ yr for ¹⁸⁶Os.

2β and α decays

A **new stage** of the experiment is in progress by using an advanced geometry with the osmium sample placed **directly** on the HP-Ge detector **inside its cryostat** to **increase** the **detection** efficiency to the **low-energy** γ **-ray quanta** expected in the theoretically fastest decays of ¹⁸⁴Os and ¹⁸⁶Os to the first excited levels of the daughter nuclei.

Osmium isotopes could be enriched by gas centrifugation, at present the only viable technology to produce large amounts of isotopically enriched materials. Using of enriched isotopes can improve dramatically the sensitivity of experiments with ¹⁸⁴Os and ¹⁸⁶Os. In particular the alpha decays of these nuclides to excited levels of the daughters can be surely observed.