

Istituto Nazionale di Fisica Nucleare

Study for rare processes in naturally occurring Zr isotopes using Cs_2ZrCl_6 crystal scintillators

<u>A. Leoncini ^{1,2}</u>, P. Belli ^{1,2}, R. Bernabei ^{1,2}, F. Cappella ^{3,4},

V. Caracciolo ^{1,2}, R. Cerulli ^{1,2}, M. Laubestein ⁵, A. Incicchitti ^{3,4}, S. Nisi ⁵, S. Nagorny ⁶, V. Nahorna ⁷, P. Wang ⁷

- ¹ Dipartimento di Fisica, Università di Roma 'Tor Vergata', I-00133 Rome, Italy
- ² INFN Sezione di Roma Tor Vergata, I-00133 Rome, Italy
- ³ INFN Sezione Roma, I-00185 Rome, Italy
- ⁴ Dipartimento di Fisica, Università di Roma 'La Sapienza', I-00185 Rome, Italy
- ⁵ INFN Laboratori Nazionali del Gran Sasso, 67100 Assergi (AQ), Italy
- ⁶ Department of Physics, Queen's University, Kingston, ON K7L 3N6, Canada
- ⁷ Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada

Interest in studying the 2β decay

- 2β decay without the presence of neutrinos, if observed, could open a new window beyond the Standard Model.
- ★ The nuclear matrix elements for the 2ν mode and for the 0ν mode can be related to each other through relevant parameters: in the free nucleon interaction, the g_A value is 1.2701, but, when considering a nuclear decay, there are indications that the phenomenological axial-vector coupling value is reduced at g_A < 1, more precisely: g_A ≈ 1.269 A^{-0.18} or g_A ≈ 1.269 A^{-0.12}, depending on the nuclear model adopted to infer the g_A value.

<u>2β investigation with various nuclei would shed</u> <u>new light in constraining these and other</u> <u>important model-dependent parameters.</u>

$$2\nu 2\beta^{-}: {}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}Y + 2e^{-} + 2\bar{\nu}_{e}$$
L conserved
$$0\nu 2\beta^{-}: {}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}Y + 2e^{-}$$
L violated ($\Delta L = 2$) \rightarrow massive
Majorana
neutrino

$0\nu 2\beta$ searches with non-trivial candidates

Our proposal:

 $0\nu 2\beta$ of ⁹⁶Zr with Cs₂ZrCl₆ scintillators via "source = detector" experimental approach ⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe are struggling with an internal and environmental gamma background, while profiting from welldeveloped crystal production and material purification technologies

⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd - only ¹⁰⁰Mo is under consideration due to well-developed detector material and its high radiopurity

⁴⁸Ca, ⁹⁶Zr, ¹⁵⁰Nd are the less studied due to combination of unfavorable experimental conditions specific to each of them.

- $Q_{2\beta}({}^{96}Zr) = 3.35 \text{ MeV}$
- Favorable from a theoretical point of view $T_{1/2} \sim (Q_{2\beta})^5$
- Reasonable natural isotopic abundance
- About 15 g of enriched ⁹⁶Zr (55%) is available
- New advanced detector material (Cs₂ZrCl₆)
- Crystal production under full control
- Extensive studies of detector properties

Investigation of 2β decay in ^{94,96}Zr and for ⁹⁶Zr's β decay

Experiment	Transition	$T_{1/2}$	Ref.	Technique	
ZICOS, (Kamioka Observatory, Japan)	⁹⁶ Zr 0+ → ⁹⁶ Mo 0+ ₁ (g.s.)	under construction (supported by Grant-in-Aid for Scientific Research on Innovative Areas 26105502)	[1]	Organic liquid scintillator (almost similar structure as KamLAND-Zen detector)	
NEMO I, II, III, Frejus (France) (next: SuperNEMO)	⁹⁶ Zr 0+→ ⁹⁶ Mo 0+ ₁ (g.s.)	>9.2×10 ²¹ >1.29×10 ²²	[2] [3]	Tracker detector	
Kimballton Underground Research Facility, (USA)	⁹⁶ Zr 0+→ ⁹⁶ Mo 2+ ₁	>3.1×10 ²⁰	[4]	HP-Ge	
Collaboration at Fréjus Underground Laboratory	⁹⁶ Zr 0+→ ⁹⁶ Mo 2+ ₁ , 0+ ₁ , 2+ ₂ , 2+ ₃	>(2.6 - 7.9) ×10 ¹⁹	[5]	HP-Ge	
Collaboration at LNGS	⁹⁶ Zr 0+→ ⁹⁶ Mo 2+ ₁	>3.8×10 ¹⁹	[6]	HP-Ge	
TILES (TIFR, Mumbai)	⁹⁴ Zr 0+→ ⁹⁴ Mo 2+ ₁	>5.2×10 ¹⁹	[7]	HP-Ge	
Kimballton Underground Research Facility, (USA)	⁹⁶ Zr 0+→ ⁹⁶ Mo 6+	>2.4×10 ¹⁹	[8]	HP-Ge	

• Possibility to study $0\nu4\beta$ decay of 96 Zr \rightarrow 96 Ru [9].

[1] EPS-HEP (2019) 437
 [2] NPA 847 (2010) 168
 [3] PhD U. Coll. London (2015)
 [4] S.W. Finch et W. Tornow, Phys, Rev. C 92 (2015) 045501

[5] J. Phys. G: Nucl. Part. Phys. 22 (1996) 487
[6] C. Arpesella et al. Lett. 27 (l) (1994) pp. 29-34
[7] N. Dokania et al. J. Phys. G: Nucl. Part. Phys. 45 (2018) 075104
[8] S.W. Finch, W. Tornow, Nucl. Inst. Meth. A 806(2016)70-74
[9] J. Heeck and W. Rodejohann 2013 *EPL* 103 32001

 β and 2β decay of 96 Zr. The decay Q-values and excitation energies of the first three states of Nb are also indicated.

CZC low-background measurements at LNGS (Italy) started June 21st, 2021

Cs₂ZrCl₆ crystals

CZC crystal radiopurity

over 700 hours of low-background measurements on HPGe detector

Our crystals are rather clean, even if they were grown from 99.9% grade raw materials

Data analysis

The mean-time pulse-shape discrimination (PSD) method [10] was used to discriminate $\beta(\gamma)$ events from α events caused by α radioactive contamination of the detectors by ²³²Th and ²³⁸U with their daughters.

The mean value of the mean time vs energy is represented together with 3σ intervals for the two CZC crystals.

Measured spectra

With the selection on α given by the PSD

T = 8736 h

Cs₂ZrCl₆ ("cone")

Red: alpha

Blue: β/γ

Cs₂ZrCl₆ ("cylinder")

• Degraded α events in [0.1, 1.4] MeV = 2428 (5.5%)

About the α spectra

- The alpha spectra measured in the 2 crystals are very similar in shape ۲
- The spectra seem to have 7 α peaks ٠
- But the counting rate of peak at \approx 2 MeVee is much higher than the others ٠

10

 Cs_2ZrCl_6 ("cylinder") - α

Fit of the α spectra with α decays from ²³⁸U, ²³²Th and ²³⁵U chains

Cylinder:

 $\alpha/\beta = 0.246(1) + 0.0258(2) \cdot E_{\alpha}[MeV]$

Fit of the α spectra with α decays from $^{238}\text{U},\,^{232}\text{Th}$ and ^{235}U chains

Summary

- > Fits including also α events from ²³⁵U chain reproduce well the measured spectra
- For the cone crystal seems that some events are missing in the higher E peak with respect to the model
- ➤ The peak with highest counting rate at ≈ 2 MeVee seems to be due to ²³¹Pa decay from ²³⁵U chain for both the crystals
- ▶ But, the origin of the 3 α peaks at higher energy (i.e. E = 2.45, 2.85 and 3.25 MeVee), mostly due to ²²⁷Ac→…→²⁰⁷Pb sub-chain n. 3 from ²³⁵U chain, is still under study

- Radioactive contaminants from ²³⁸U, ²³²Th and ²³⁵U chains have been simulated in the two CZC crystals and in the various materials of the setup (PMTs, Teflon, Copper).
- The PMTs contribution turns out to be dominant when taking into account the measured activities in the different materials.

Fit window: [290, 2800] keV, χ^2 =371, d.o.f.=231

Fit output: Int. u238-1: 2.0000 mBq/kg Int. u238-4: 1.2500 mBq/kg Int. u238-5: 2.2313 mBq/kg Int. t232-2: 1.2500 mBq/kg Int. t232-3: 2.0000 mBq/kg Int. k40: 9.9018 mBq/kg Int. u235-1: 2.5207 mBq/kg Int. u235-3: 0.0000 mBq/kg Int. cs134: 52.7343 mBq/kg u238-1-pmt: 142.5848 mBq/kg u238-2-pmt: 539.7463 mBq/kg u238-3-pmt: 1290.0000 mBq/kg u238-4-pmt: 250.3394 mBq/kg u238-5-pmt: 765.9943 mBq/kg t232-1-pmt: 104.9851 mBg/kg t232-2-pmt: 0.0000 mBq/kg t232-3-pmt: 59.3276 mBq/kg 322.1013 mBq/kg k40-pmt:

BREEZE detector array schematic (1st phase @ Queen's)

Four separate detector's modules, each consist of:

5 6 7 2 1 3 4 2 1 3 4 4 1 3 4

NEWS-G3 low-background setup

(1) CZC \varnothing 21×21 mm³

- (2) Plastic scintillator block roughly 200×200×300 mm³
- (3) Quartz light guide \emptyset 25×(100-150) mm³
- (4) 2 low-background PMTs

(5) OFHC Cu, 10 cm (6) Pb, 20 cm (7) HDPE, 10 cm

(8) 4π muon veto

10²¹-10²² y sensitivity level in one year of data taking

Perspectives and conclusions

No collaboration has ever involved a crystal-scintillator based experiment, except for the present one, that guarantees several well-known advantages as very high duty cycle, good energy resolution, high stability during the running condition, high detection efficiency, safety environmental impact, etc.

First two Cs_2ZrCl_6 scintillating crystals have been grown in Queen's University and studied at the National Laboratory of Gran Sasso (LNGS, Italy).

CZC have very good scintillating performance and radiopurity levels.

We are planning a new experiment with larger mass and better quality crystals.

Backup slides

Contamination measured in R6233MOD PMTs

Time	Mass	²²⁶ Ra	^{234m} Pa	²³⁵ U	²²⁸ Ra	²²⁸ Th	⁴⁰ K	¹³⁷ Cs	⁶⁰ Co
(s)	(kg)	(Bq/kg)	(Bq/kg)	(mBq/kg)	(Bq/kg)	(mBq/kg)	(Bq/kg)	(mBq/kg)	(mBq/kg)
233164	0.1599	$0.46 {\pm} 0.02$	1.3 ± 0.7	48±18	0.13 ± 0.02	91±16	0.61 ± 0.12	< 12	< 10
252817	0.1429	$0.42 {\pm} 0.02$	< 1.6	47±18	0.097 ± 0.023	75 ± 15	$0.45{\pm}0.10$	< 27	< 7
179043	0.1493	$0.42 {\pm} 0.03$	< 2.2	< 61	0.11 ± 0.03	83±17	$0.53 {\pm} 0.13$	15 ± 9	< 13
253541	0.1431	$0.49 {\pm} 0.02$	2.6±0.9	69 ± 20	$0.12{\pm}0.03$	$100{\pm}20$	$0.65 {\pm} 0.12$	< 10	< 14
171680	0.1513	$0.45 {\pm} 0.03$	< 2.9	35±21	$0.12{\pm}0.03$	72 ± 17	$0.66 {\pm} 0.15$	< 24	< 5
147685	0.1461	$0.38 {\pm} 0.03$	< 3.2	< 51	$0.12{\pm}0.03$	62 ± 18	$0.45 {\pm} 0.13$	< 17	< 6
173967	0.1547	$0.54{\pm}0.03$	2.1±0.9	45±19	$0.14{\pm}0.03$	120 ± 20	$0.91 {\pm} 0.16$	< 20	< 6
86402	0.1550	$0.39 {\pm} 0.04$	< 2.4	57±25	$0.15 {\pm} 0.04$	78 ± 23	$0.38 {\pm} 0.17$	< 18	< 15
86333	0.1597	$0.34{\pm}0.03$	< 2.3	< 59	$0.12{\pm}0.04$	64±19	$0.57{\pm}0.18$	< 33	< 25
252918	0.1548	$0.43 {\pm} 0.02$	< 2.1	37±17	$0.12{\pm}0.02$	$100{\pm}20$	$0.46 {\pm} 0.10$	< 17	< 12
190066	0.1458	$0.42{\pm}0.03$	< 1.7	47 ± 20	$0.16 {\pm} 0.03$	66 ± 14	$0.49 {\pm} 0.12$	< 21	< 14
167544	0.1462	$0.51 {\pm} 0.03$	< 1.8	59±23	$0.12{\pm}0.03$	$100{\pm}20$	$0.73 {\pm} 0.16$	< 14	< 8
165333	0.1480	$0.39 {\pm} 0.03$	< 2.9	38±19	$0.13 {\pm} 0.03$	$100{\pm}20$	$0.29 {\pm} 0.11$	< 13	< 7
257147	0.1474	$0.36 {\pm} 0.02$	< 2.0	< 44	0.097 ± 0.023	73±13	$0.52{\pm}0.11$	15±7	< 10
160374	0.1531	$0.48 {\pm} 0.03$	$1.7 {\pm} 0.9$	42±22	0.11 ± 0.03	67 ± 18	$0.32{\pm}0.12$	< 17	< 8
163032	0.1442	$0.35 {\pm} 0.03$	< 2.8	36±19	$0.14{\pm}0.03$	83±19	$0.60{\pm}0.15$	< 17	< 6
Ave	erage	0.43		47	0.12	83	0.54		
Standard	deviation	0.06		10	0.02	17	0.16		

Analysis of time correlation between α events

 Cs_2ZrCl_6 ("cylinder") - α

- Case of cylinder (higher statistics for α events) \geq
- Starting point: the highest E peak at \approx 3.2 MeVee (because in both ²³²Th and ²³⁵U chains it is the last peak of a fast sequence of α decays)

Preliminary

- Remind: if independent events the average delay is expected to be 720 s \geq
- Search for the α decay that precedes an α event in the E=3.2 MeVee peak;
- Study of its E distribution and delay DT between events 2)
- (is E distribution a peak?).AND.(is average delay << 720 s?) 3)

Preliminary Analysis of time correlation between α events

Distributions of the delays between the 4 subsequent α events

