Alpha decay of neodymium isotopes

N.V. Sokur¹, P. Belli^{2,3}, R. Bernabei^{2,3}, R.S. Boiko^{1,4}, F. Cappella^{5,6}, V. Caracciolo^{2,3}, R. Cerulli^{2,3}, F.A. Danevich^{1,2}, A. Incicchitti^{5,6}, D.V. Kasperovych¹, V.V. Kobychev¹, M. Laubenstein⁷, A. Leoncini^{2,3}, V. Merlo^{2,3}, O.G. Polischuk^{1,5}, V.I. Tretyak^{1,7}

¹ Institute for Nuclear Research of NASU, Kyiv, Ukraine
² INFN, sezione di Roma "Tor Vergata", Rome, Italy
³ Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy
⁴ National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
⁵ INFN, sezione di Roma, Rome, Italy
⁶ Dipartimento di Fisica, Università di Roma "La Sapienza", Rome, Italy
⁷ INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy

XXI conference on high energy physics and nuclear physics 21-24 of March 2023, Kharkiv, Ukraine

Neodymium isotopes

Five of seven naturally occurring neodymium isotopes are potentially alpha unstable

isotope	abundance (%)	decay mode, Q (keV)	T _{1/2} (exp), y	T _{1/2} (theor), y	
¹⁴³ Nd	12.173	α, 530.5	> 2×10 ¹⁷ [1]	$1.0 \times 10^{79} - 3.5 \times 10^{92}$	
	23.798	α, 1901.3	g.s. to g.s.: = $2.29(16) \times 10^{15}$ [2]	$2.3 \times 10^{15} - 5.0 \times 10^{15}$	
¹⁴⁴ Nd			to 1 st excited ¹⁴⁰ Ce 2 ⁺ (1596.2 keV) level: —	$7.8 \times 10^{121} - 9.5 \times 10^{121}$	
145 Nd	8.293	α, 1574.1	> 1×10 ¹⁷ [1, 3]	$2.2 \times 10^{22} - 4.9 \times 10^{23}$	
	17.189	α, 1182.1	g.s. to g.s.: —	$2.0 \times 10^{34} - 4.0 \times 10^{34}$	
¹⁴⁶ Nd			to 1 st excited ¹⁴² Ce 2 ⁺ (641.3 keV) level: > 1.6×10 ¹⁸ [4]	5.8×10 ⁷⁷ — 8.5×10 ⁷⁷	
148 N IA	5.756	α, 599		$6.1 \times 10^{70} - 1.1 \times 10^{71}$	
		2α, 1011.5		3.0×10 ¹⁷² — 8.0×10 ¹⁷⁸ [5]	

[1] G. Kauw, Untersuchungen an angereicherten Isotopen auf naturliche Alphastrahlung, Forschungsber. Landes Nordrhein-Westfalen No.1640 (1966).

[2] A.A. Sonzogni, Nuclear Data Sheets for A = 144, Nucl. Data Sheets 93 (2001) 599.

[3] E. Browne, J.K. Tuli, Nuclear Data Sheets for A = 145, Nucl. Data Sheets 110 (2009) 507.

[4] C. Stengl, H. Wilsenach, K. Zuber, First search for the α-decay of ¹⁴⁶Nd into the first excited state of ¹⁴²Ce, Int. J. Mod. Phys. E 24 (2015) 1550043.

[5] V.I. Tretyak, Spontaneous double alpha decay: First experimental limit and prospects of investigation, Nucl. Phys. At. Energy 22 (2021) 121.

21-24 of March 2023

XXI conf. on HEP and nuclear physics, Kharkiv, Ukraine

Experiment

Total mass of all samples m(Nd₂O₃) = 2381 g (density ρ = 2.85 g/cm³)

Ultra-low background HPGe-detector system GeMulti located at the depth of ~ 3600 m of water equivalent underground at the STELLA facility of the Gran Sasso underground laboratory of the INFN (Italy).

Passive shield:

- 1) low-radioactive copper 10 cm thick
- 2) 20 cm layer of lead

The Plexiglas box with the detector was flashed by high-purity nitrogen gas to eliminate environmental radon.

The live time of the measurements is 51237 h.

1. Nd₂O₃ source samples

- 2. two of four coaxial HPGe detectors (225 cm³ each)
- 3. aluminium cup of the detector system endcap
- 4. copper walls of the endcap

21-24 of March 2023

α and 2α decays accompanied by γ quanta

 γ quanta appear in α decay in the following cases:

- 1) if an excited level of a daughter nucleus is populated, with subsequent emission of deexcitation γ ;
- 2) if daughter nucleus is unstable and decays further with emission of γ ;

 α decay:

- 1) $^{143}Nd \rightarrow ^{139}Ce \rightarrow ^{139}La$
- 2) $^{144}Nd \rightarrow ^{140}Ce$
- 3) $^{145}Nd \rightarrow ^{141}Ce \rightarrow ^{141}Pr$
- 4) $^{146}Nd \rightarrow ^{142}Ce$
- 5) $^{148}Nd \rightarrow ^{144}Ce \rightarrow ^{144}Pr \rightarrow ^{144}Nd$

 2α decay:

6) ${}^{148}Nd \rightarrow {}^{140}Ba \rightarrow {}^{140}La \rightarrow {}^{140}Ce$

In the cases 1, 3, and 5, daughter Ce isotopes are unstable and decay with emission of γ 's. Decays 2 and 4 can be observed only in the case of decays to excited Ce level.

Energy resolution

21-24 of March 2023

XXI conf. on HEP and nuclear physics, Kharkiv, Ukraine

Search for alpha decays of ¹⁴³Nd, ¹⁴⁵Nd, ¹⁴⁸Nd

21-24 of March 2023

XXI conf. on HEP and nuclear physics, Kharkiv, Ukraine

Search for 2α decay of ¹⁴⁸Nd

Summary

Decay	$Q_{\alpha}(Q_{2\alpha})$ (keV)	Transition (energy of level (keV))	Energy of γ-quanta (keV)	best previous limit $T_{1/2}$, y	this work $T_{1/2}$, y			
α decay								
143 Nd $\rightarrow ^{139}$ Ce	530.5	$7/2^+ \rightarrow 3/2^+$ (g.s.)	165.9	> 2×10 ¹⁷	> 1.4×10 ²⁰			
$^{144}Nd \rightarrow ^{140}Ce$	1901.3	$0^{+} \rightarrow 2^{+} (1596.2)$	1596.2		in progress			
$^{145}Nd \rightarrow ^{141}Ce$	1574.1	$7/2^- \rightarrow 7/2^-$ (g.s.)	145.4	> 1×10 ¹⁷	> 6.2×10 ¹⁹			
$^{146}Nd \rightarrow ^{142}Ce$	1182.1	$0^{+} \rightarrow 2^{+} (641.3)$	641.3	> 1.6×10 ¹⁸	> 3.5×10 ²¹			
$^{148}\text{Nd} \rightarrow ^{143}\text{Ce}$	599	$7/2^+ \rightarrow 3/2^+$ (g.s.)	133.5		> 2.2×10 ¹⁹			
2α decay								
$^{148}\text{Nd} \rightarrow ^{140}\text{Ba}$	1011.5	$0^{\scriptscriptstyle +} \rightarrow 0^{\scriptscriptstyle +} (\text{g.s.})$	537.3		> 2.7×10 ²⁰			

Conclusions

- 1) The search for alpha decays of naturally occurring neodymium isotopes was realized with low-background HPGe gamma spectrometry.
- 2) The obtained $T_{1/2}$ limits were improved by 2-3 orders of magnitude compared to current best limits.
- 3) For the first time $T_{1/2}$ limits were set for ¹⁴⁸Nd α and 2α decays.
- 4) The data analysis is in progress.

Back-up slides

Search for alpha decay of ¹⁴⁶Nd

Search for alpha decay of ¹⁴⁸Nd

Other limits

nuclide, decav channel	energy (keV)	lim S	<i>T</i> _{1/2} (y)
¹⁴⁸ Nd, 2α	487.0	166	> 1.6×10 ²⁰
¹⁴⁸ Nd, 2α	537.3	50	$> 2.7 \times 10^{20}$
¹⁴⁶ Nd, α	641.3	45	> 3.5×10 ²¹
¹⁴⁸ Nd, α	696.5	77	> 9.0×10 ¹⁸

165.0853 M1 100 $^{143}Nd \rightarrow ^{139}Ce \rightarrow ^{139}La$ $3/2^{+}$ 0.0 165.9 keV: ¹³⁹₅₈Ce₈₁ α = 0.2516 $I_{\gamma} = 79.90$ **165.8576** ~ 100 % $Q_{\epsilon} = 264.6$ $5/2^{+}$ 1.499 ns 137.641 d <u>7/2</u>+ **0.0** $5. \times 10^{-7} \%$ stable $^{139}_{57}La_{82}$

 $^{144}Nd \rightarrow ^{140}Ce$ 1596.210 E2 100 **0**⁺ 0.0 1596.2 keV: ¹⁴⁴₆₀Nd₈₄ $\alpha = 8.98 \times 10^{-4}$ (bricc) $I_{\gamma+ce} = 100$ (for partial half-life) 2⁺ **1596.233** ?% ?y 0.0910 ps $I_{\gamma} = 0.9991$ $Q_{\alpha} = 1903.2$ **0**⁺ **0.0** ~ 100 % 2.29×10^{15} stable ¹⁴⁰₅₈Ce₈₂

 $^{146}\text{Nd} \rightarrow ^{142}\text{Ce}$ 607 - 25 - 100 - 25 - 100 **0**⁺ stable? 641.3 keV: ¹⁴⁶₆₀Nd₈₆ α = 5.63×10⁻³ (bricc) $I_{\gamma+ce} = 100$ (for partial half-life) 2⁺ **641.282** ?% $Q_{\alpha} = 1182.1$ $I_{\gamma} = 0.9944$ 5.56 ps α decay of ^{146}Nd wasn't observed <u>0.0</u>?% $>5 \times 10^{16} \, \mathrm{y}$ ¹⁴²₅₈Ce₈₄

0.0

XXI conf. on HEP and nuclear physics, Kharkiv, Ukraine