Investigation of double-beta decay of ¹⁵⁰Nd to excited states of ¹⁵⁰Sm by the low-counting γ spectrometry

<u>D.V. Kasperovych</u>¹, P. Belli^{2,3}, R. Bernabei^{2,3}, R.S. Boiko^{1,4}, F.A. Danevich^{1,2}, A. Di Marco^{2,3}, A. Incicchitti^{5,6}, F. Cappella^{5,6}, V. Caracciolo⁷, V.V. Kobychev¹, M. Laubenstein⁷, S. Nisi⁷, D.V. Poda⁸, O.G. Polischuk^{1,5}, V.I. Tretyak^{1,7}, R. Cerulli^{2,3}, F. Šimkovic⁹

¹Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine

² INFN, sezione di Roma "Tor Vergata", Rome, Italy

³ Dipartimento di Fisica, Università di Roma "Tor Vergata", Rome, Italy

⁴ National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

⁵ INFN, sezione di Roma, Rome, Italy

⁶ Dipartimento di Fisica, Università di Roma 'La Sapienza', Rome, Italy

⁷ INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy

⁸ CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

⁹ Comenius University, Bratislava, Slovakia

2β decay of ¹⁵⁰Nd

¹⁵⁰Nd 2β decay scheme

 ^{150}Nd is one of the most prospective isotopes for investigation of 2β decay:

• Energy release

 $Q_{\beta\beta} = 3371.38(20) \text{ keV} [1];$

- Natural isotopic abundance $\delta = 5.638(28)\%$ [2];
- Possibility to investigate the decay to excited levels of ¹⁵⁰Sm with high energy resolution (HP Ge spectrometry).

[1] V.S. Kolhinen et al., Phys. Rev. C 82 (2010) 022501.

[2] J. Meija et al., Pure Appl. Chem. 88 (2016) 293.

Experimental results for $^{150}Nd \rightarrow ^{150}Sm$ (0⁺, 740.5 keV)

Short description	<i>T_{1/2}</i> , 10 ¹⁹ y (68% C.L.)	Year [Ref.]
Modane underground laboratory (4800 m w.e.), HP Ge 400 cm^3 3046 g of Nd O ($\delta = 5.638\%$) 11321 h 1-d	14^{+5}_{-4}	2004 [1]
spectrum (Re-estimation)	$(13.3^{+4.5}_{-2.6})$	(2009 [2])
Kimballton Underground Research Facility, 2 HP Ge (\sim 304 cm ³ each one), 50 g ¹⁵⁰ Nd ₂ O ₃ (δ = 93.6%), 15427 h, coincidence spectrum	$10.7^{+4.6}_{-2.6}$	2014 [3]
Modane underground laboratory (4800 m w.e.), NEMO-3 detector, foil with 57.2 g of ¹⁵⁰ Nd ₂ O ₃ (δ = 91.0%), 40774 h, e ⁻ and γ energy, e ⁻ tracks (<i>preliminary result</i>)	$11.1^{+2.6}_{-2.1}$	2022 [4]

[1] A.S. Barabash et al., Phys. Atom. Nucl. 67 (2004) 1216;[2] A.S. Barabash et al., Phys. Rev. C 79 (2009) 045501;

[3] M.F. Kidd et al., Phys. Rev. C 90 (2014) 055501;[4] V. Tretyak et al., Abstracts of "Nucleus-2021", p. 257.

Experimental setup

- 2381-g Nd₂O₃ sample (average density ~2.84 g/cm³), used in previous experiment [1] and additionally purified before the measurements [2].
- Gran Sasso underground lab (~3.6 km of w.e.)
- 4 HP Ge detectors ($\simeq 225$ cm³ each) in a cryostat with cylindrical well in the center;
- Shield: copper (10 cm), lead (20 cm);
- Removing radon: Plexiglas container flushed with high-purity nitrogen gas;
- Measurement time: 51237 hours (~5.85 y.).
- Detection of energy and time of events (count coincidence (CC) analysis is possible)

[1] A.S. Barabash et al., Phys. Atom. Nucl. 67 (2004) 1216.

[2] R.S. Boiko, Int. J. Mod. Phys. A 32 (2017) 1743005.

INR annual conference, 26-30.09.2022, Kyiv, Ukraine

Nd₂O₃ vs. background spectra

INR annual conference, 26-30.09.2022, Kyiv, Ukraine

Radioactive contamination of Nd₂O₃ sample

Sub- chain	$A_{\rm m}$, mBq/kg *		Cub	$A_{ m m}$, mBq/kg *		
	This work	Before purification [1]	chain	This work	Before purification [1]	
²³⁸ U chain			⁴⁰ K	3.1(7)	16(8)	
²³⁸ U	≤ 3.7	≤ 28	⁶⁰ Co	≤ 0.03	**	
²²⁶ Ra	≤ 0.16	1.5(8)	^{108m}Ag	≤ 0.018	**	
²³² Th chain			¹³³ Ba	≤ 0.08	**	
²²⁸ Ra	≤ 0.3	≤ 2.1	¹³⁷ Cs	≤ 0.018	≤ 0.8	
²²⁸ Th	0.33(5)	< 1.3	¹³⁸ La	0.085(7)	**	
²³⁵ II chain			¹⁵⁰ Eu	≤ 0.06	**	
23511		~ 1 7	¹⁵² Eu	≤ 0.13	**	
2215	≤ 0.7	≥ 1.7 **	¹⁵⁴ Eu	≤ 0.031	**	
²³¹ Pa	≤ 1.0		¹⁷⁶ Lu	0.33(3)	1.1(4)	
²²⁷ Ac	≤ 0.17	**	²⁰⁷ Bi	≤ 0.07	**	

• * Here and below: 68% C.L. for uncertainties; 90% C.L. for limits

• ** The measurement time was too low to observe corresponding peaks

[1] R.S. Boiko, Int. J. Mod. Phys. A 32 (2017) 1743005.

334.0-keV peak

Interval of fit: $\sigma_{fit} = \pm 0.3 \times 10^{19} \text{ y};$ Monte Carlo simulation: $\sigma_{MC} = \pm 0.7 \times 10^{19} \text{ y};$ Number of nuclei: $\sigma_{nucl} = \pm 0.05 \times 10^{19} \text{ y};$ $A_m(^{150}\text{Eu}) \le 0.031 \text{ mBq/kg} (68\% \text{ C.L.}) \rightarrow \Delta S \le 283 \text{ counts} \rightarrow \sigma_{150}_{Eu} = +8.3 \times 10^{19} \text{ y};$

$$T_{1/2} = 7.1^{+3.0}_{-1.7}$$
(stat.) $\pm {}^{+8.3}_{-0.8}$ (syst.) × 10¹⁹ y

406.5-keV peak

 $T_{1/2} = 16.5^{+19.0}_{-5.8} \times 10^{19} \text{ y} \text{ (statistical uncertainties only);}$ Interval of fit: $\sigma_{\text{fit}} = {}^{+1.1}_{-1.0} \times 10^{19} \text{ y;}$ Monte Carlo simulation: $\sigma_{\text{MC}} = \pm 1.7 \times 10^{19} \text{ y;}$ Number of nuclei: $\sigma_{\text{nucl}} = \pm 0.12 \times 10^{19} \text{ y;}$ $A_{\text{m}}({}^{150}\text{Eu}) \le 0.031 \text{ mBq/kg} (68\% \text{ C.L.}) \rightarrow \Delta S \le 0.4 \text{ counts} \rightarrow \sigma_{150}{}_{\text{Eu}} = +0.03 \times 10^{19} \text{ y}$

$$T_{1/2} = 16.5^{+19.0}_{-5.8}$$
(stat.) ± 2.0 (syst.) $\times 10^{19}$ y

Coincidence analysis

- 2-dimensional energy spectrum of coincidences (*left*);
- Energy in one detector is fixed as (609 ± 5) keV (²¹⁴Bi, *top right*)
- Energy of one detector is fixed as (2615 ± 5) keV (²⁰⁸Tl, *bottom right*).

334.0 + 406.5 CC (±1.8σ selection interval)

$$Int_{334} = 1.8 \cdot 2 \cdot \frac{\sum_{i=1}^{4} \sigma_{\det_i}}{4} = 4.22 \text{ keV}$$

•
$$N_{bg}(1) = N_{bg}(a) + N_{bg}(b) = 45 \rightarrow$$

$$\rightarrow$$
 b = 0.742 counts/keV

•
$$B(1) = Int_{334} \bullet b = 3.13$$
 counts

•
$$B(2) = 2.56$$
 counts

•
$$B = (B(1) + B(2))/2 = 2.85$$
 counts

•
$$S_{CC}^0 = [5.1 \dots 12.1] = 7.2^{+3.8}_{-3.3}$$
 counts

• CC selection efficiency:

•
$$\eta = \left(\int_{-1.8\sigma}^{1.8\sigma} g(0,\sigma) \, dx \right)^2 = 0.8614$$

• $S_{CC_norm} = \frac{S_{CC}^0}{\eta} = 8.3_{-3.8}^{+4.4}$ counts

INR annual conference, 26-30.09.2022, Kyiv, Ukraine

334.0 + 406.5 CC (estimation of background from ²²⁸Ac)

CC systematics

 $S_{\text{CC-Ac}} = S_{\text{CC}_\text{norm}} - \Delta S_{328} - \Delta S_{338} = 8.1^{+4.4}_{-3.7} \rightarrow T_{1/2} = 8.8^{+7.6}_{-3.1} (\text{stat.}) \times 10^{19} \text{ y.}$ The same procedure for intervals $\pm (1.0\sigma, 1.2\sigma, 1.4\sigma, ..., 3.0\sigma)$. CC selection interval: SD $(T_{1/2}) = 3.0 \times 10^{19} \text{ y}$ Number of nuclei: $\sigma_{\text{nucl}} = \pm 0.07 \times 10^{19} \text{ y}$; MC simulation: $\sigma_{\text{MC}} = \pm 1.3 \times 10^{19} \text{ y}$

$T_{1/2}$ combined value & systematics summary

• $T_{1/2}^{\text{comb}} = \frac{\ln 2 \cdot N \cdot t \cdot \sum \varepsilon_i}{\sum S_i} = 10.1^{+3.6}_{-2.1} (\text{stat}) \times 10^{19} \text{ y}$								
Value, × 10 ¹⁹ y	334.0	406.5	combined	СС				
< <i>T</i> _{1/2} >	7.1	16.5	10.1	8.8				
Statistical uncertainty	+3.0 -1.7	+19.0 -5.8	+3.6 -2.1	+7.6 -3.1				
Systematics								
Number of nuclei	±0.05	±0.12	±0.08	±0.07				
Interval of fit (CC selection)	±0.3	+1.1 -1.0	±0.4	±3.0				
MC simulation	±0.7	±1.7	±0.7	±1.3				
¹⁵⁰ Eu possible presence	+8.3	+0.03	+4.8	—				
Sum systematics	+8.3 -0.8	±2.0	+4.9 -0.8	±3.2				
Sum uncertainty	+8.9 -1.8	+19.0 -6.1	+6.0 -2.3	+8.2 -4.5				

Our result vs. previous ones

[1] A.S. Barabash et al., Phys. Atom. Nucl. 67 (2004) 1216;[2] A.S. Barabash et al., Phys. Rev. C 79 (2009) 045501;

[3] M.F. Kidd et al., Phys. Rev. C 90 (2014) 055501;[4] V. Tretyak et al., Abstracts of "Nucleus-2021", p. 257.

Origin of 334.0-keV peak area excess?

- $S_{334} = 524(156)$ counts; should be 298(102) counts (calculated from S_{406}).
- Peak area excess: $\Delta S_{334} = 226(186)$ counts.
- Three possible sources:
- 1. Statistical 'artifact' \rightarrow the probability of such statistical effect should be tested.
- 2. ¹⁵⁰Eu in the sample (I_{334} =95.16%; I_{406} =0.139%). Then, $A_m \leq 0.05 \text{ mBq/kg}$ (90% C.L.). From analysis of the other peaks: $A_m \leq 0.06 \text{ mBq/kg} \rightarrow ^{150}$ Eu possible content in the sample should be estimated by using data of the mass-spectromtry measuremnts (in progress), and calculations of possible generation of ¹⁵⁰Eu in the sample by cosmic rays and neutrons..
- 3. Indication of ¹⁵⁰Nd \rightarrow ¹⁵⁰Sm(2⁺, 334.0 keV). Then, $T_{1/2} \ge 0.8 \times 10^{20}$ y (90% C.L.) or $T_{1/2} = 1.8^{+8.5}_{-0.9}$ (stat.) $\times 10^{20}$ y. In [1] $T_{1/2} \ge 2.2 \times 10^{20}$ y is reported; the decay could be much more suppressed \rightarrow theoretical calculations are in progress.

[1] A.S. Barabash et al., Phys. Rev. C 79 (2009) 045501

Conclusions

- Experimental investigation of 2β decay of 150 Nd to the first 0⁺ excited state of 150 Sm has been performed by using lowbackground 4-crystal HPGe γ -spectrometer at the Gran Sasso UL.
- Gamma quanta expected in the decay have been observed in the spectrum of single events, as well as in the coincidence spectra. The half-life of ^{150}Nd relatively to the 2β decay to the 0_1^+ excited state of ^{150}Sm is estimated (preliminary) as

 $T_{1/2} = [10.1^{+3.6}_{-2.1}(\text{stat.})^{+4.9}_{-0.8}(\text{syst.})] \times 10^{19} \text{ y}$

 Possible indication of ¹⁵⁰Nd decay to the 2⁺(334.0 keV) has been observed, but the effect could have different origin; additional analysis and theoretical calculations are in progress.