ПОШУК ПРИРОДНОГО СІБОРГІЮ У ВОЛЬФРАМІ ЗА ДОПОМОГОЮ КРИСТАЛІВ ВОЛЬФРАМАТУ КАДМІЮ-116

<u>В. В. Кобичев</u>¹, П. Беллі^{2,3}, Р. Бернабей^{2,3}, Ф. А. Даневич^{1,2}, А. Інчікітті^{4,5}, Ф. Каппелла^{4,5}, В. Караччіоло⁶, Д. В. Касперович¹, М. Лаубенштейн⁶, Д. В. Пода⁷, О. Г. Поліщук^{1,4}, Н. В. Сокур¹, В. І. Третяк^{1,6}, Р. Черуллі^{2,3}

¹ Інститут ядерних досліджень НАН України, Київ, Україна
 ² НІЯФ, відділення у Римі «Тор Вергата», Рим, Італія
 ³ Римський університет «Тор Вергата», Рим, Італія
 ⁴ НІЯФ, відділення у Римі, Рим, Італія
 ⁵ Римський університет «Ла Сапієнца», Рим, Італія
 ⁶ Національна лабораторія Гран-Сассо, Ассерджі, Італія
 ⁷ Центр ядерної фізики та матеріалознавства, Орсе, Франція

План:

- 1. Надважкі елементи в природі
- 2. Експеримент Aurora
- 3. Аналіз даних
- 4. Висновки

Гіпотеза про існування природних довгоживучих надважких елементів (HBE) з атомними масами *A* ≥ 250 і атомними номерами *Z* ≥ 104 обговорювалася, починаючи з 1950-х років. Теоретичні розрахунки передбачають так званий *острів стабільності* нейтронно-надлишкових ядер навколо подвійних магічних чисел *Z* = 114 або 126, *N* = 184, з періодами напіврозпаду деяких нуклідів до 10⁸ – 10⁹ років. Такий довгий період напіврозпаду забезпечив би детектовану кількість надважких елементів на Землі за умови, що вони ефективно створювались під час досонячного нуклеосинтезу (в умовах надвисокого нейтронного потоку в момент вибуху наднової або злиття нейтронних зірок), приблизно за 4,5 млрд років до теперішнього часу. Але довгоживучі надважкі елементи в природі досі не знайдені, незважаючи на велику кількість експериментальних пошуків.

Штучний синтез надважких елементів (до Z=118) здійснюється на прискорювачах важких іонів, але цим засобом створюються нейтронно-дефіцитні ядра, далекі від заповнення очікуваної нейтронної оболонки з N = 184. Всі вони мають досить малий час життя (від мікросекунд до годин).

Пошук довгоживучих надважких елементів в природі здійснювався з 1950-х років різними шляхами. Деякі з них:

•Мас-спектрометрія природних зразків (AMS, ICP-MS, …), сучасна чутливість 10⁻¹³…1,5 · 10⁻¹⁶ атом/атом.

•Пошук незвичайно довгих альфа-треків у старих мінералах (енергія альфа-частинок у розпадах НВЕ має бути значно вище, ніж у альфа-розпадах ядер урану, торію та їх дочірніх; чутливість 10⁻¹¹...10⁻¹⁴ г/г).

•Пошук подій спонтанного поділу ядер з множинністю нейтронів у 2-3 рази більшою, ніж у ядер групи урану (чутливість 10⁻¹³...10⁻¹⁴ атом/атом).

•Пошук треків, створених надважкими ядрами космічних променів у метеоритних мінералах (експеримент OLIMPIYA, позитивний результат для *Z*=113...129, але час життя може бути ~100 років).

•Пошук високоенергетичних альфа-частинок у наднизькофонових неорганічних ядерних детекторах (в першу чергу сцинтиляторах), що містять у своєму складі елементи-"носії", хімічно та кристалографічно подібні НВЕ. Наприклад:

ZnWO₄, CaWO₄, CdWO₄ для сіборгію (ека-W, *Z*=106);

Bi₄Ge₃O₁₂ (BGO) для московію (ека-Ві, *Z*=115);

РЬWO₄ для флеровію (ека-РЬ, *Z*=114) та сіборгію.

Цей підхід дозволяє поєднати високу ефективність реєстрації та низький фон.

Группа∙ ↓Перио	► 1 д	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	ll Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W 1	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
Лантаноиды			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
Актиноиды			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Існують теоретичні передбачення, що найбільш стабільними мають бути надважкі елементи з Z=106...108 (сіборгій, борій, хассій). Хімічні властивості сіборгію, що вивчені в прискорювальних експериментах, подібні вольфраму, а його іонний радіус, R(Sg⁶⁺)=63 пм, дуже близький до R(W⁶⁺)=60 пм. Таким чином, вольфрам може бути носієм сіборгію в фізико-хімічних процесах. Природний сіборгій може заміщувати вольфрам в кристалах вольфрамату кадмію, які застосовано в цій роботі.

Сцинтилятори ¹¹⁶CdWO₄ (№1 і №2), що було застосовано в цій роботі. Маса кожного 0,58 кг, розмір ≈Ø45×46 мм. Вирощені методом Чохральського. Кадмій збагачено до 82% по ¹¹⁶Cd, вольфрам має природний ізотопний склад (повна кількість вольфраму 1,94·10²⁴ ядер).

INR conference, 2022.09.27

Схема експерименту Aurora

Експеримент виконувався у 2011-2017 pp. у підземній лабораторії Гран-Сассо (Італія) з основною метою пошуку безнейтринного подвійного бета-розпаду ¹¹⁶Cd. Була використана низькофонова установка DAMA-R&D. Внутрішні порожнини продуваються очищеним азотом для вилучення атмосферного радону. Система накопичення даних записує астрономічний час події

та форму сцинтиляційних імпульсів протягом 50 мкс з шириною часового каналу АЦП 20 нс.

- 1. Сцинтилятори ¹¹⁶CdWO₄
- 2. Тефлонові контейнери
- 3. Рідкий сцинтилятор
- 4. Кварцові світловоди Ø7×40 см
- 5. ΦΕΠ Hamamatsu R6233MOD, ø3"
- 6. Високочиста мідь (10 см)
- 7. Низькорадіоактивний свинець (15 см)
- 8. Кадмій (1.5 мм)
- 9. Поліетилен + парафін (4...10 см)

10. Плексигласовий контейнер

6

7

Подія альфа-розпаду з додатковим енерговиділенням в рідкому сцинтиляторі (РС)

Сігнатура, що очікується: альфа-подія високої енергії (*E*_α> 8.9 MeB) без "сходинкової" структури на передньому фронті сигналу та без накладення події в РС. Такий сигнал може відповідати альфа-розпаду дочірнього ядра в ланцюжку, що починається розпадом (α, β, ЕС) надважкого довгоживучого ядра в кристалі. INR conference, 2022.09.27

Часовий аналіз сигналів: альфа-бета розділення за допомогою оптимального фільтру, дискримінація швидких ланцюжків розпадів за аналізом фронту імпульсу.

Оптимальний фільтр: Індикатор форми (shape indicator, SI) для сигналу *f*(*t_k*):

$$SI = \frac{\sum f(t_k) P(t_k)}{\sum f(t_k)},$$

де $P(t_k) = \frac{f_{\alpha}(t_k) - f_{\beta}(t_k)}{f_{\alpha}(t_k) + f_{\beta}(t_k)}$

 $f_{\alpha}(t)$ та $f_{\beta}(t)$ -- зразкові форми імпульсів для α - та $\beta(\gamma)$ -подій.

Ефективність відбору альфа-події становить 96%.

Часовий аналіз сигналів: альфа-бета розділення за допомогою оптимального фільтру, дискримінація швидких ланцюжків розпадів за аналізом фронту імпульсу.

- Аналіз фронту за часом наростання сигналу дозволяє відкидати:
- події швидких ланцюжків ²¹²ВіРо (ряд ²³²Th, дозволяє також оцінити активність ²²⁸Th: 18(2) мкБк/кг і 27(3) мкБк/кг для кристалів №1 і №2); мають довгий фронт.
- події, пов'язані з енерговиділенням у рідкому сцинтиляторі (дуже короткий фронт).

/ 20 keV Повний спектр і його компоненти

0⁵

 10^{4}

 10^{2}

10¹

1

Counts / Повна альфа-активність кристалів №1 і №2 становить 1.8 мБк/кг та 2.7 мБк/кг, відповідно.

$\beta^{113m}Cd$ Raw data 10^{3} Bi-Po α(1) 1000 2000 3000 4000 Energy (keV) Counts / 10 keV 234T 238₁ ²¹⁰Po ²⁴⁴Cm ²⁴¹Am 2000 ²²⁸Th + daughters aramanaaraa 600 800 1000 1200 1400 Energy (γ scale, keV) $\alpha/\gamma = 0.111(3) + 0.0133(5) \cdot E_{\alpha}$ [MeV] 10

Альфа-спектр та його компоненти:

Chain	Nuclide	Activity (mBq/kg				
	²⁴¹ Am	0.2220(4)				
²³² Th	²³² Th	0.2230(3) 0.0445(3)				
²³⁸ U	²²⁸ Th ²³⁸ U	0.0197(6) 0.526(5)				
	²³⁴ U ²³⁰ Th ²²⁶ Ra	0.614(1) 0.024(5) 0.0050(3)				
	²¹⁰ Po	0.303(5)				

INR conference, 2022.09.27

Альфа/гамма-відношення

Результат аналізу даних

Альфа-спектр в області високих енергій (кількість подій-кандидатів дорівнює 551) був апроксимований двома модельованими компонентами:

- апроксимовании компонентами: 1. Залишковий спектр ²¹²Ві+²¹²Ро (головний фон). .
- Альфа-пік дочірнього ядра, яке виникає після розпаду довгоживучого Sg. Центр піку вибирався у діапазоні *E*_α=[8.9...14]
 МеВ, FWHM екстрапольовано за фоновими альфа-піками.

Верхня межа на площу альфа-піку становить lim *S* = 24,1 відліків (90% дов.рівень). З урахуванням, що повна експозиція становить $6.03 \cdot 10^{28}$ ядер(W) · год та ефективність відбору альфа-подій за формою є=96%, а також за стандартним припущенням, що період напіврозпаду надважкого нукліду становить *T*_{1/2}=10⁹ років, отримуємо верхнє обмеження на атомну концентрацію Sg у W: Альфа-спектр двох кристалів (у шкалі енергій альфачастинок) з експозицією 36050 кг×год. Показано найбільший можливий альфа-пік, що є сумісним з даними та з симульованим спектром подій ²¹²ВіРо в діапазоні E_{α} =[8.9...14] МеВ.

$$\lim \left(\frac{N_{\text{sg}}}{N_{\text{W}}}\right) = \frac{\lim S \cdot T_{1/2}(\text{Sg})}{\ln 2 \cdot \varepsilon N_{\text{W}} t} = 5.1 \cdot 10^{-15} \text{ атомів}(\text{Sg})/\text{атом}(\text{W}) \quad (90\% \text{ дов.рівень})$$

INR conference, 2022.09.27

Висновки

 Встановлено нове верхнє обмеження на атомну концентрацію гіпотетичного природного надважкого довгоживучого сіборгію у вольфрамі (у стандартному припущенні T_{1/2}(HBE)=10⁹ років):

5.1·10⁻¹⁵ атомів(Sg)/атом(W) (90% дов.рівень)

- Це обмеження на порядок краще за те, що було раніше отримане зі сцинтиляційним детектором, виготовленим з вольфрамату цинку [P Belli *et al Phys. Scr.* 2015 (90) 085301].
- Досягнута чутливість є кращою або порівняною з чутливістю експериментів, в яких пошук природних надважких довгоживучих елементів здійснювався за допомогою реєстрації спонтанного поділу (10⁻¹³...10⁻¹⁴ атом/атом у зразках Os i Xe) або з прискорювальною мас-спектрометрією (10⁻¹³...1,5 · 10⁻¹⁶ атом/атом у зразках Au, Th, Pt, Pb, Bi, Os).

Результат опубліковано у роботі *P.Belli, R.Bernabei, F.Cappella, V.Caracciolo, R.Cerulli, F.A.Danevich, A.Incicchitti, D.V.Kasperovych, V. V. Kobychev, M.Laubenstein, D.V.Poda, O.G.Polischuk, N.V.Sokur, V.I.Tretyak.* Search for naturally occurring seaborgium with radiopure ¹¹⁶CdWO₄ crystal scintillators. *Phys. Scr.* 2022 (**97)** 085302.

Дякую за увагу