Study of Double Beta Decays of ¹⁵⁰Nd

A.S. Barabash, P. Belli, R. Bernabei, R.S. Boiko, F. Cappella, V. Caracciolo, R. Cerulli, F.A. Danevich, D.L. Fang, F. Ferella, A. Incicchitti, D.V. Kasperovych, V.V. Kobychev, S.I. Konovalov, M. Laubenstein, A. Leoncini, V. Merlo, S. Nisi, D.V. Poda, O.G. Polischuk, I.B.-K. Shcherbakov, F. Simkovic, A. Timonina, V.S. Tinkova, V.I. Tretyak, V.I. Umatov

ICNFP 2023 21/07/2023

Vincenzo Caracciolo INFN and University of Roma Tor Vergata

Introduction

Experimental results for $^{150}Nd \rightarrow ^{150}Sm$ (0⁺₁, 740.46 keV)

Short description	T _{1/2} , 10 ¹⁹ y	Year [Ref.]
Modane underground laboratory (4800 m w.e.), HP Ge 400 cm3, 3046 g of Nd2O3 (δ = 5.638%), 11321 h, 1-d spectrum	14 ⁺⁵ -4	2004 [1]
Re-estimation of the measurement in [1]	13.3 ^{+4.5} - _{-2.6}	2009 [2]
Modane underground laboratory (4800 m w.e.), NEMO-3 detector, foil with 57.2 g of 150Nd2O3 (δ = 91.0%), 40774 h, energies of e– and 🛛, tracks for e– (preliminary result)	7.1 ± 1.6	2014 [3]
Kimballton Underground Research Facility (1450 m w.e.), 2 HP Ge (~304 cm3 each one), 50 g 150Nd2O3 (δ = 93.6%), 15427 h, coincidence spectrum	10.7 ^{+4.6} -2.6	2014 [4]

[1] A.S. Barabash et al., Phys. Atom. Nucl. 67 (2004) 1216.
[2] A.S. Barabash et al., Phys. Rev. C 79 (2009) 045501.
[3] S. Blondel, PhD thesis, LAL, Orsay, France, LAL 13-154 (2013).

[4] M.F. Kidd et al., Phys. Rev. C 90 (2014) 055501.

Experimental Setup

Schematic view of the set-up with Nd-containing source samples (1) installed in the HPGe detector system: (2) coaxial HPGe detectors, (3) aluminium cup of the detector system endcap, (4) copper part of the endcap, (5) position of radioactive γ sources during the calibration campaign.

Experimental Setup

- 2381 g Nd₂O₃ sample (average density ~2.84 g/cm³), used in previous experiment [1], additionally purified before the present measurements [2].
- 4 HPGe detectors (~225 cm³ each) in a cryostat with cylindrical well in the center; Gran Sasso National Laboratory (LNGS)
- Shield: copper (10 cm), lead (20 cm)
- Plexiglas container flushed with high-purity nitrogen gas (to remove the radon)

[1] A.S. Barabash et al., Phys. Atom. Nucl. 67 (2004) 1216.[2] R.S. Boiko, Int. J. Mod. Phys. A 32 (2017) 1743005.

Schematic view of the set-up with Nd-containing source samples (1) installed in the HPGe detector system: (2) coaxial HPGe detectors, (3) aluminium cup of the detector system endcap, (4) copper part of the endcap, (5) position of radioactive γ sources during the calibration campaign.

Energy Spectra

Energy spectra measured with the Nd_2O_3 sample over 5.845 y (blue) and without sample for 0.8969 y (normalized to 5.845 y, red) by the low-background HPGe-detector system. The energy of the γ peaks is in keV.

HPGe detector	Energy resolution for γ peaks, FWHM (keV)			
	295.2 keV (²¹⁴ Pb)	351.9 keV (²¹⁴ Pb)	609.3 keV (²¹⁴ Bi)	1460.8 keV (⁴⁰ K)
1	1.83(8)	1.81(5)	2.03(4)	2.375(8)
2	1.56(8)	1.54(5)	1.80(4)	2.18(4)
3	3.11(9)	3.06(10)	2.42(13)	2.64(3)
4	3.49(18)	3.39(20)	2.80(5)	3.84(2)

Radioactive Contamination of the Nd₂O₃ Sample

The peaks in the spectra presented in Figs. can be assigned to γ quanta of ⁴⁰K and nuclides of the ²³²Th and ²³⁸U chains. In addition, ²⁶Al, ⁶⁰Co, ^{108m}Ag, ¹³⁷Cs, ²⁰⁷Bi γ peaks are observed in the both spectra.

$$A = (S_{sample} / t_{sample} - S_{bg} / t_{bg}) / (\eta \varepsilon m)$$

 $S_{sample} (S_{bg}) = area of a peak;$ $t_{sample} (t_{bg}) = time of measurement;$ $\eta = \gamma$ -ray emission absolute intensity in the transition; $\epsilon = full energy peak detection efficiency;$

m = sample mass.

Radioactive Contamination of the Nd₂O₃ Sample

In addition to usual background contaminations (40K, U/Th), γ peaks of lanthanides ¹⁷⁶Lu (306.8 keV) and ¹³⁸La (1435.8 keV) were observed in the spectrum with Nd₂O₃ sample.

The radioactive contamination of the sample by the lanthanides have been estimated as:

¹³⁸La: 0.085(7) mBq/kg ¹⁷⁶Lu: 0.32(2) mBq/kg

Other estimated contaminants: ²²⁸Ra, ²²⁸Th, ²³⁵U, ²²⁷Ac, ⁴⁰K.

Chain	Nuclide	Activity (mBq/kg)	
		Before purification [29]	Purified material
	⁴⁰ K	16 ± 8	3.1 ± 0.7
	^{60}Co		≤ 0.03
	101 Rh		≤ 0.09
	^{102}Rh		≤ 0.005
	^{108m}Ag		≤ 0.018
	$^{121}\mathrm{Te}$		≤ 0.36
	¹³³ Ba		≤ 0.006
	^{137}Cs	≤ 0.8	≤ 0.018
	^{138}La		0.085 ± 0.007
	^{144}Ce		≤ 0.9
	150 Eu		≤ 0.033
	^{152}Eu		≤ 0.10
	^{154}Eu		≤ 0.014
	¹⁷⁶ Lu	1.1 ± 0.4	0.32 ± 0.02
	²⁰⁷ Bi		≤ 0.07
²³² Th	²²⁸ Ra	≤ 2.1	0.12 ± 0.07
	228 Th	≤ 1.3	0.33 ± 0.05
$^{235}\mathrm{U}$	$^{235}\mathrm{U}$	≤ 1.7	1.5 ± 0.4
	²³¹ Pa		≤ 0.28
	^{227}Ac		0.47 ± 0.07
^{238}U	234m Pa	≤ 28	≤ 3.4
	²²⁶ Ra	15 ± 0.8	≤ 0.17
	^{210}Pb		≤ 178

Energy Spectrum in the ROI - 1D Spectra (13,92 kg y)

406.5-keV peak area = **389(121) counts** χ²/n.d.f. = 222/207 = 1.07

334.0-keV peak area = **615(144) counts** with a reasonable fit quality

 χ^2 /n.d.f. = 235/175 = 1.34

 $T_{1/2}^{406}(^{150}\text{Nd} \rightarrow ^{150}\text{Sm}(0_1^+)) = [1.03^{+0.47}_{-0.24}(\text{stat})] \times 10^{20} \text{ y}$

 $T_{1/2}^{334}(^{150}\text{Nd} \rightarrow ^{150}\text{Sm}(0_1^+)) = [0.60^{+0.18}_{-0.11}(\text{stat})] \times 10^{20} \text{ y}$

Coincidence in 2 HPGe Detectors (13,92 kg y)

Two γ quanta, 334.0 keV and 406.5 keV, emitted in de-excitation of the 740.5-keV 0⁺¹ level of ¹⁵⁰Sm, can be detected in coincidence by the HPGe counters of the detector system.

Some peculiarities in the 2D-spectrum:

- Vertical lines: ²¹⁴Bi, ²⁰⁸Tl, annih. 511
- Diagonal lines: ⁴⁰K, ²⁰⁸Tl, ²¹⁴Pb, ²¹⁴Bi
- Point-like structures: ¹⁷⁶Lu

Example:

The energy of one detector is fixed at (2615 \pm 3 σ) keV (²⁰⁸TI)

Coincidence in 2 HPGe Detectorsemitted in De-excitation of the 740.5 keV 0⁺₁ level of ¹⁵⁰Sm (13,92 kg y)

The energy in one detector is fixed to the energy interval where γ quanta from the ¹⁵⁰Nd \rightarrow ¹⁵⁰Sm (0⁺, 740.5 keV) decay are expected:

(406.5 ± 3σ) keV (334.0 ± 3σ) keV

A random coincidence background when energy of events in one of the detectors was taken as $(375 \text{ keV} \pm 3\sigma) \text{ keV}$

 $S^{334\&406} = 3.80 - 10.3 \text{ counts} (68\% \text{ C.L.})$ $\varepsilon^{334\&406} = 0.0004262(23)$

 $T^{334\&406}_{1/2}$ (¹⁵⁰Nd \rightarrow ¹⁵⁰Sm(0⁺₁)) = [0.98^{+0.69}_{-0.36}(stat)]×10²⁰ yr.

Half-life of ¹⁵⁰Nd relative to the $2v2\beta$ decay to the 0^{+}_{1} excited level of ¹⁵⁰Sm

Source of systematic uncertainty	Relative uncertainty
	$(\% \text{ of } T_{1/2})$
Number of ¹⁵⁰ Nd nuclei	± 1.7
Detection efficiency in 1-dimensional data	± 3.2
Interval of fit for 334.0-keV peak	$+1.0 \\ -1.4$
Bin of spectrum for 334.0-keV peak fit	+10.6 -7.2
Energy scale for 334.0-keV peak fit	+0.8
Model of background for 334.0-keV peak fit	-0.8
Interval of fit for 406.5-keV peak	+3.7 -5.1
Bin of spectrum for 406.5-keV peak fit	-12.0
Energy scale for 406.5-keV peak fit	-2.5
Model of background for 406.5-keV peak fit	+5.7 -4.2
Monte Carlo statistics for CC detection efficiency	± 0.5
Energy interval of events selection to build CC spectra	$+11.9 \\ -2.8$
Energy interval of background estimation in CC data	+1.1 -4.3

Sources of systematic uncertainties of the half-life of ¹⁵⁰Nd relative to the $2v2\beta$ decay to the 740.5 keV 0⁺₁ excited level of ¹⁵⁰Sm calculated by using the 334.0-keV, 406.5-keV peaks in the 1-dimensional spectrum, and the CC data. The uncertainties are assumed to be independent and added in quadrature.

Half-life of ¹⁵⁰Nd relative to the $2v2\beta$ decay to the first 0⁺₁ excited level of ¹⁵⁰Sm obtained by analysis of the **1-dimensional spectrum**, **coincidence data**, and **their combinations**. "M = 1" denotes the results obtained from the analysis of the 1-dimensional spectrum build under the condition "multiplicity = 1".

Number	Method of analysis	Half-life, 10^{20} yr
in order		
1	1-Dimensional spectrum, 334.0 keV peak	$0.60^{+0.18}_{-0.11}(\text{stat})^{+0.07}_{-0.05}(\text{syst})$
1a	1-Dimensional spectrum, 334.0 keV peak, $M = 1$	$0.63^{+0.20}_{-0.12}(\text{stat})^{+0.08}_{-0.06}(\text{syst})$
2	1-Dimensional spectrum, 406.5 keV peak	$1.03^{+0.47}_{-0.24}(\text{stat})^{+0.08}_{-0.15}(\text{syst})$
2a	1-Dimensional spectrum, 406.5 keV peak, $M = 1$	$1.02^{+0.49}_{-0.25}(\text{stat})^{+0.08}_{-0.15}(\text{syst})$
3	Combination of 1 and 2	$0.61^{+0.14}_{-0.09}(\text{stat})^{+0.11}_{-0.16}(\text{syst})$
4	Coincidence data (comparison of the events	
	observed with known mean background)	$0.98^{+0.69}_{-0.36}(\text{stat})^{+0.12}_{-0.05}(\text{syst})$
5	Combination of 1a, 2a and 4 (see footnote 4)	$0.73^{+0.18}_{-0.11}(\text{stat})^{+0.16}_{-0.17}(\text{syst})$
6	Combination of 2a and 4 (see footnote 4)	$1.00^{+0.40}_{-0.21}(\text{stat})^{+0.14}_{-0.15}(\text{syst})$

Half-life of ¹⁵⁰Nd relative to the $2v2\beta$ decay to the 0^+ excited level of ¹⁵⁰Sm

Indication of 2v2β decay of ¹⁵⁰Nd to the 2⁺₁ excited level of ¹⁵⁰Sm

More statistics is needed

Conclusions

Double- β transitions of ¹⁵⁰Nd to excited levels of ¹⁵⁰Sm were studied with the help of low-background HPGe γ spectrometry at the Gran Sasso underground laboratory of the INFN (Italy).

A highly purified neodymium-containing sample with a mass of 2.381 kg was measured over 5.845 yr in a closed geometry by a four-crystal HPGe detector system, that allowed to detect γ quanta with energies 334.0 keV and 406.5 keV, emitted in the 2v2 β decay of ¹⁵⁰Nd to the 740.5 keV 0⁺₁ excited level of ¹⁵⁰Sm both in the 1-dimensional energy spectrum and in coincidence. By analysis of the 334.0-keV and 406.5-keV peaks, and of the coincidences

between the γ quanta, the half-life of ¹⁵⁰Nd was calculated as:

$$T_{1/2}(^{150}\text{Nd} \rightarrow ^{150}\text{Sm}(0^+_1)) = [0.73^{+0.18}_{-0.11}(\text{stat})^{+0.16}_{-0.17}(\text{syst})] \times 10^{20} \text{ ymin}^{100}$$

However, taking into account the excess of events in the 334.0-keV peak:

$$T_{1/2}(^{150}\text{Nd} \rightarrow ^{-150}\text{Sm}(0^+_1)) \sim 1 \times 10^{20} y$$

 $T_{1/2}(^{150}\text{Nd} \rightarrow {}^{150}\text{Sm}(2^+_1)) \sim 2 \times 10^{20} y$

More statistics is needed

The theoretical calculations of the ¹⁵⁰Nd decay probability are in progress.

Preliminary calculations in the framework of the spherical QRPA multiplied by deformed overlap factors agree the hint