





# Study of $2\beta$ Decays of $^{150}\mathrm{Nd}$

A. Leoncini <sup>1,2</sup>, A.S. Barabash <sup>3</sup>, P. Belli <sup>1,2</sup>, R. Bernabei <sup>1,2</sup>, R.S. Boiko <sup>4,5</sup>, F. Cappella <sup>6,7</sup>, V. Caracciolo <sup>1,2</sup>, R. Cerulli <sup>1,2</sup>,
 F.A. Danevich <sup>2,4</sup>, D.L. Fang <sup>8</sup>, F. Ferella <sup>9</sup>, A. Incicchitti <sup>6,7</sup>, D.V. Kasperovych <sup>4</sup>, V.V. Kobychev <sup>4</sup>, S.I. Konovalov <sup>3</sup>, M. Laubenstein <sup>9</sup>,
 V. Merlo <sup>1,2</sup>, S. Nisi <sup>9</sup>, D.V. Poda <sup>10</sup>, O.G. Polischuk <sup>4,6</sup>, I.B.- K. Shcherbakov <sup>11</sup>, F. Simkovic <sup>12</sup>, V.I. Tretyak <sup>4,9</sup>, V.I. Umatov <sup>3</sup>

<sup>1</sup> Dipartimento di Fisica, Università di Roma "Tor Vergata", I-00133 Rome, Italy

<sup>2</sup> INFN, Sezione di Roma "Tor Vergata", I-00133 Rome, Italy

<sup>3</sup> National Research Centre Kurchatov Institute, Kurchatov Complex of Theoretical and Experimental Physics, 117218 Moscow, Russia;

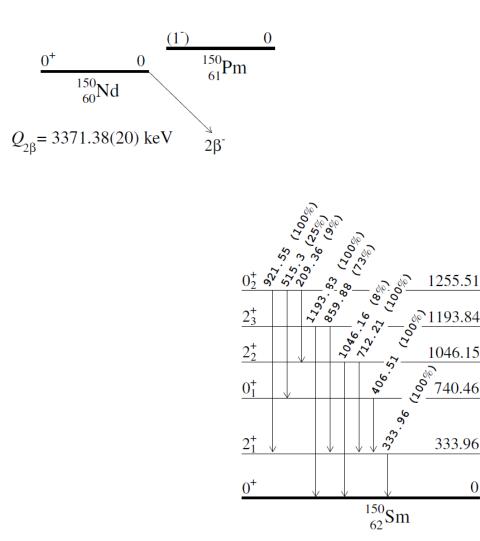
<sup>4</sup> Institute for Nuclear Research of NASU, 03028 Kyiv, Ukraine

<sup>5</sup> National University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine

<sup>6</sup> INFN, Sezione Roma "La Sapienza", I-00185 Rome, Italy

<sup>7</sup> Dipartimento di Fisica, Università di Roma "La Sapienza", I-00185 Rome, Italy

<sup>8</sup> Institute of Modern Physics, Chinese Academy of Science, 730000 Lanzhou, China


<sup>9</sup> INFN, Laboratori Nazionali del Gran Sasso, 67100 Assergi (AQ), Italy

- <sup>10</sup> Universitè Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
- <sup>11</sup> State Scientific Institution "Institute for Single Crystals" of NASU, 61072 Kharkiv, Ukraine
- <sup>12</sup> Comenius University, 81499 Bratislava, Slovakia

#### 11-15 September 2023

### Experimental results for $^{150}Nd \rightarrow ^{150}Sm$ (0<sup>+</sup><sub>1</sub>, 740.46 keV)

0



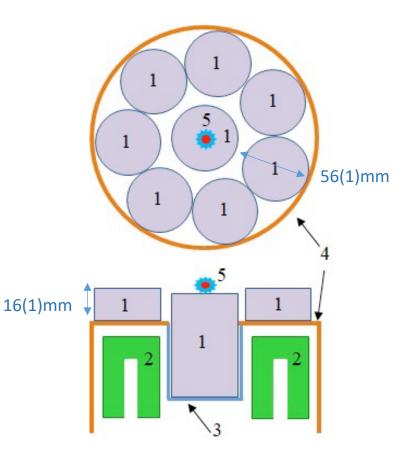
| Short description                                                                                                                                                                                   | T <sub>1/2</sub> , 10 <sup>20</sup> y | Year [Ref.] |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|
| Modane underground laboratory (4800 m w.e.),<br>HPGe 400 cm <sup>3</sup> , 3046 g of Nd <sub>2</sub> O <sub>3</sub> ( $\delta$ = 5.638%),<br>1.29 y, 1-d spectrum                                   | 1.4 <sup>+0.5</sup> -0.4              | 2004 [1]    |
| Re-estimation of the measurement in [1]                                                                                                                                                             | 1.33 <sup>+0.45</sup> -0.26           | 2009 [2]    |
| Kimballton Underground Research Facility, USA (1450 m w.e.), 2 HPGe (~304 cm <sup>3</sup> each one), 50 g $^{150}$ Nd <sub>2</sub> O <sub>3</sub> ( $\delta$ = 93.6%), 1.76 y, coincidence spectrum | 1.07 <sup>+0.46</sup> -0.26           | 2014 [3]    |
| Modane underground laboratory (4800 m w.e.),<br>NEMO-3 detector, 47 g foil of ${}^{150}Nd_2O_3$ ( $\delta$ = 91.0 %), 5.25 y, tracking-calorimetry                                                  | 1.11 <sup>+0.26</sup> -0.21           | 2022 [4]    |

[1] A.S. Barabash et al., Phys. Atom. Nucl. 67 (2004) 1216.

[2] A.S. Barabash et al., Phys. Rev. C 79 (2009) 045501.

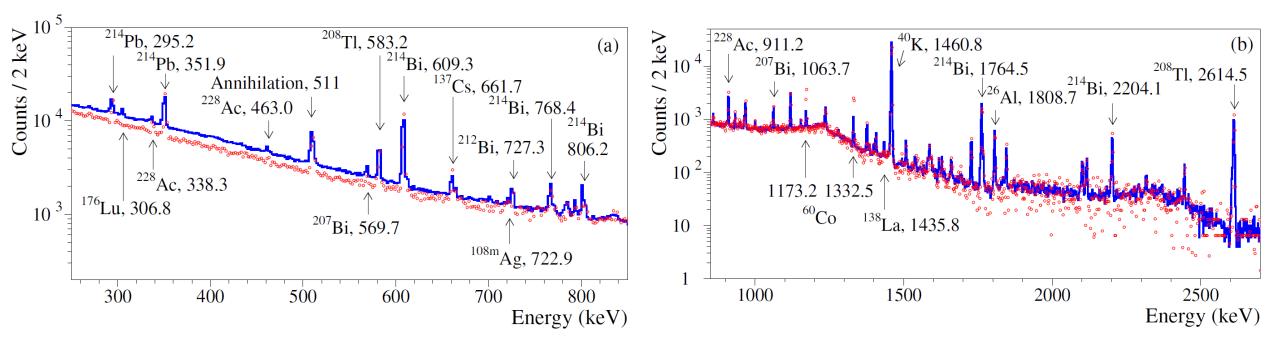
[3] M.F. Kidd et al., Phys. Rev. C 90 (2014) 055501.

[4] X. Aguerre et al., arXiv:2203.03356.


<sup>150</sup>Nd natural abundance:  $\delta$  = 5.638 %

## **Experimental Setup**

- 2381 g Nd<sub>2</sub>O<sub>3</sub> sample (average density ~2.84 g/cm<sup>3</sup>), used in previous experiment [1], additionally purified [2].
- 4 HPGe detectors (≃225 cm<sup>3</sup> each) in a cryostat with cylindrical well in the center; Gran Sasso National Laboratory (LNGS).
- Shield: copper (10 cm), lead (20 cm).
- Plexiglas container flushed with highpurity nitrogen gas to remove the radon.


[1] A.S. Barabash et al., Phys. Atom. Nucl. 67 (2004) 1216.[2] R.S. Boiko, Int. J. Mod. Phys. A 32 (2017) 1743005.





Schematic view of the set-up with Nd-containing source samples (1) installed in the HPGe detector system: (2) coaxial HPGe detectors, (3) aluminium cup of the detector system endcap, (4) copper part of the endcap, (5) position of radioactive  $\gamma$  sources during the calibration campaign.

# **Energy Spectra**

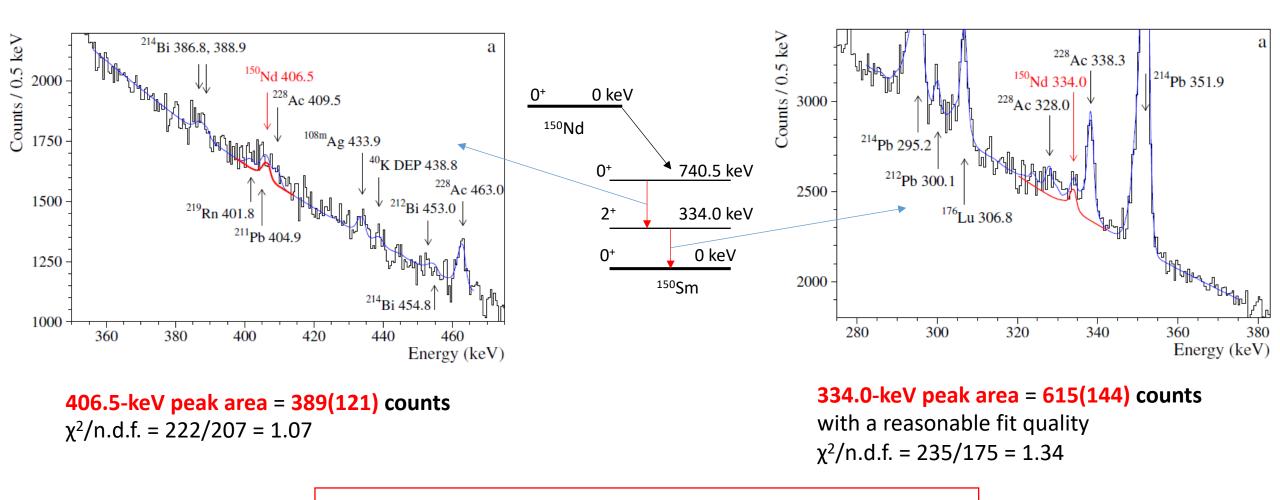


**Energy spectra** measured with the Nd<sub>2</sub>O<sub>3</sub> sample over 5.845 y (blue) and without sample for 0.8969 y (normalized to 5.845 y, red) by the low-background **HPGe-detector** system. The energy of the γ peaks is in keV.

|               | Energy resolution for γ peaks, FWHM (keV) |                                |                                |                  |
|---------------|-------------------------------------------|--------------------------------|--------------------------------|------------------|
| HPGe detector | 295.2 keV ( <sup>214</sup> Pb)            | 351.9 keV ( <sup>214</sup> Pb) | 609.3 keV ( <sup>214</sup> Bi) | 1460.8 keV (40K) |
| 1             | 1.83(8)                                   | 1.81(5)                        | 2.03(4)                        | 2.38(1)          |
| 2             | 1.56(8)                                   | 1.54(5)                        | 1.80(4)                        | 2.18(4)          |
| 3             | 3.11(9)                                   | 3.06(10)                       | 2.42(13)                       | 2.64(3)          |
| 4             | 3.49(18)                                  | 3.39(20)                       | 2.80(5)                        | 3.84(2)<br>4     |

### **Radioactive Contamination of the Nd<sub>2</sub>O<sub>3</sub> Sample**

- The peaks in the spectra measured with the Nd<sub>2</sub>O<sub>3</sub> sample and without sample can be assigned to γ quanta of <sup>40</sup>K and nuclides of the <sup>232</sup>Th and <sup>238</sup>U chains. In addition, <sup>26</sup>Al, <sup>60</sup>Co, <sup>108m</sup>Ag, <sup>137</sup>Cs, <sup>207</sup>Bi γ peaks are observed in the blue and red spectra.
- Also  $\gamma$  peaks of lanthanides <sup>176</sup>Lu (306.8 keV) and <sup>138</sup>La (1435.8 keV) were observed in the spectrum with the Nd<sub>2</sub>O<sub>3</sub> sample.


The radioactive contamination of the sample by the lanthanides have been estimated as:

```
<sup>138</sup>La: 0.085(7) mBq/kg
<sup>176</sup>Lu: 0.32(2) mBq/kg
```

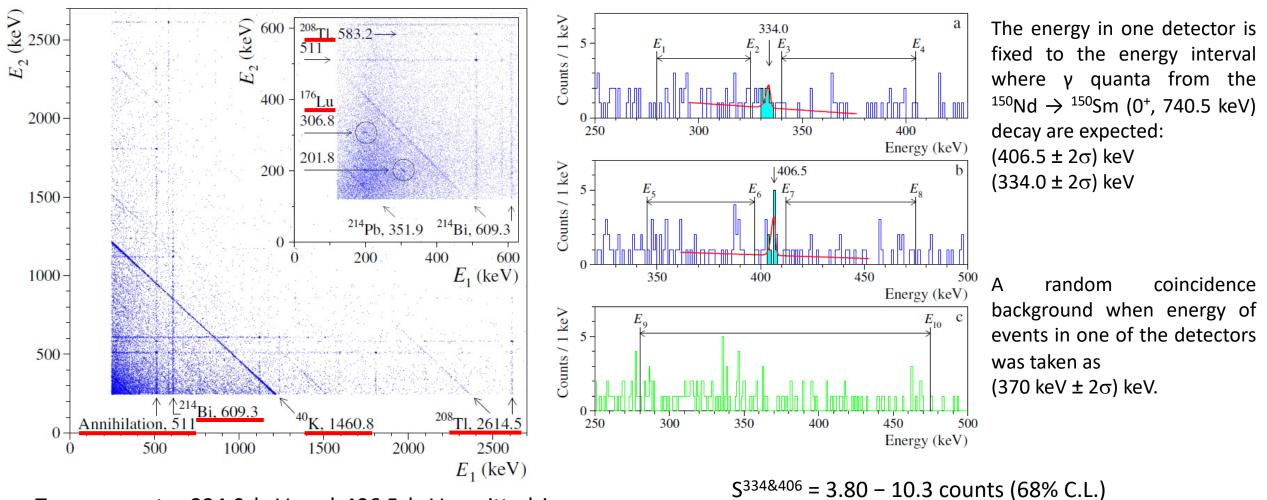
```
Other estimated contaminants: <sup>228</sup>Ra, <sup>228</sup>Th, <sup>235</sup>U, <sup>227</sup>Ac, <sup>40</sup>K.
```

| Chain              | Nuclide             | Activity (mBq/kg)        |                   |
|--------------------|---------------------|--------------------------|-------------------|
|                    |                     | Before purification [29] | Purified material |
|                    | <sup>40</sup> K     | $16 \pm 8$               | $3.1 \pm 0.7$     |
|                    | $^{60}Co$           |                          | $\leq 0.03$       |
|                    | $^{101}Rh$          |                          | $\leq 0.09$       |
|                    | $^{102}Rh$          |                          | $\leq 0.005$      |
|                    | $^{108m}Ag$         |                          | $\leq 0.018$      |
|                    | $^{121}\mathrm{Te}$ |                          | $\leq 0.36$       |
|                    | $^{133}Ba$          |                          | $\leq 0.006$      |
|                    | $^{137}Cs$          | $\leq 0.8$               | $\leq 0.018$      |
|                    | $^{138}$ La         |                          | $0.085 \pm 0.007$ |
|                    | $^{144}Ce$          |                          | $\leq 0.9$        |
|                    | $^{150}\mathrm{Eu}$ |                          | $\leq 0.033$      |
|                    | $^{152}\text{Eu}$   |                          | $\leq 0.10$       |
|                    | $^{154}\mathrm{Eu}$ |                          | $\leq 0.014$      |
|                    | $^{176}Lu$          | $1.1 \pm 0.4$            | $0.32 \pm 0.02$   |
|                    | $^{207}\mathrm{Bi}$ |                          | $\leq 0.07$       |
| <sup>232</sup> Th  | $^{228}$ Ra         | $\leq 2.1$               | $0.12 \pm 0.07$   |
|                    | $^{228}$ Th         | $\leq 1.3$               | $0.33 \pm 0.05$   |
| $^{235}\mathrm{U}$ | $^{235}\mathrm{U}$  | $\leq 1.7$               | $1.5 \pm 0.4$     |
|                    | $^{231}$ Pa         |                          | $\leq 0.28$       |
|                    | $^{227}\mathrm{Ac}$ |                          | $0.47\pm0.07$     |
| $^{238}\mathrm{U}$ | $^{234m}$ Pa        | $\leq 28$                | $\leq 3.4$        |
|                    | $^{226}$ Ra         | $15 \pm 0.8$             | $\leq 0.17$       |
|                    | $^{210}\mathrm{Pb}$ |                          | $\leq 178$ 5      |

### Energy Spectrum in the ROI - 1D Spectra (5.845 y)



$$T_{1/2}^{406}(^{150}\text{Nd} \rightarrow {}^{150}\text{Sm}(0_1^+)) = [1.03^{+0.47}_{-0.24}(\text{stat})] \times 10^{20}$$
$$T_{1/2}^{334}(^{150}\text{Nd} \rightarrow {}^{150}\text{Sm}(0_1^+)) = [0.60^{+0.18}_{-0.11}(\text{stat})] \times 10^{20}$$

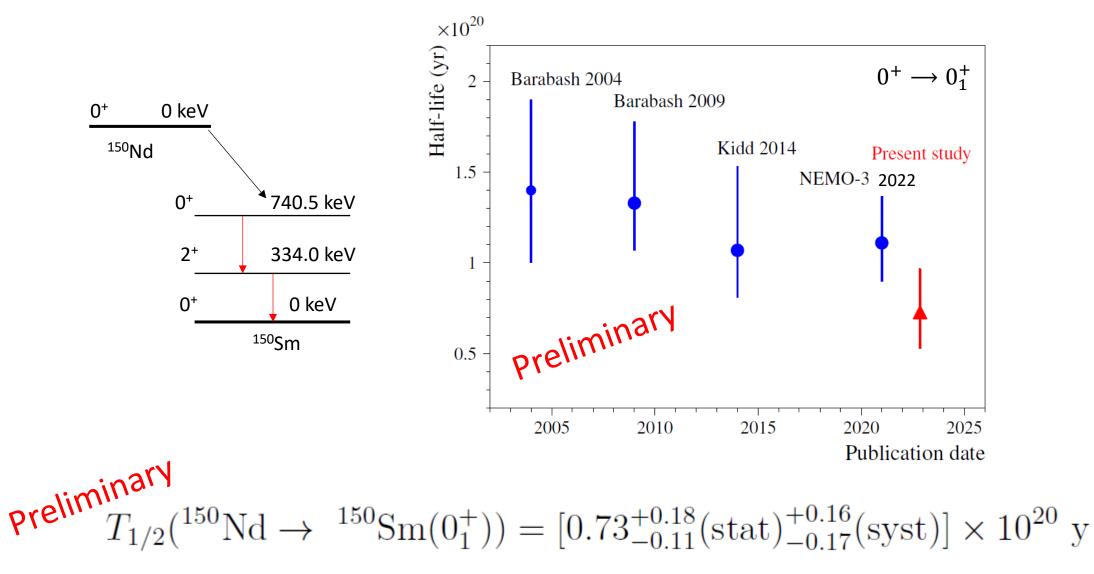

 $T_{1/2} = \frac{N\ln 2 \ \varepsilon \ t}{S}$ 

6

y

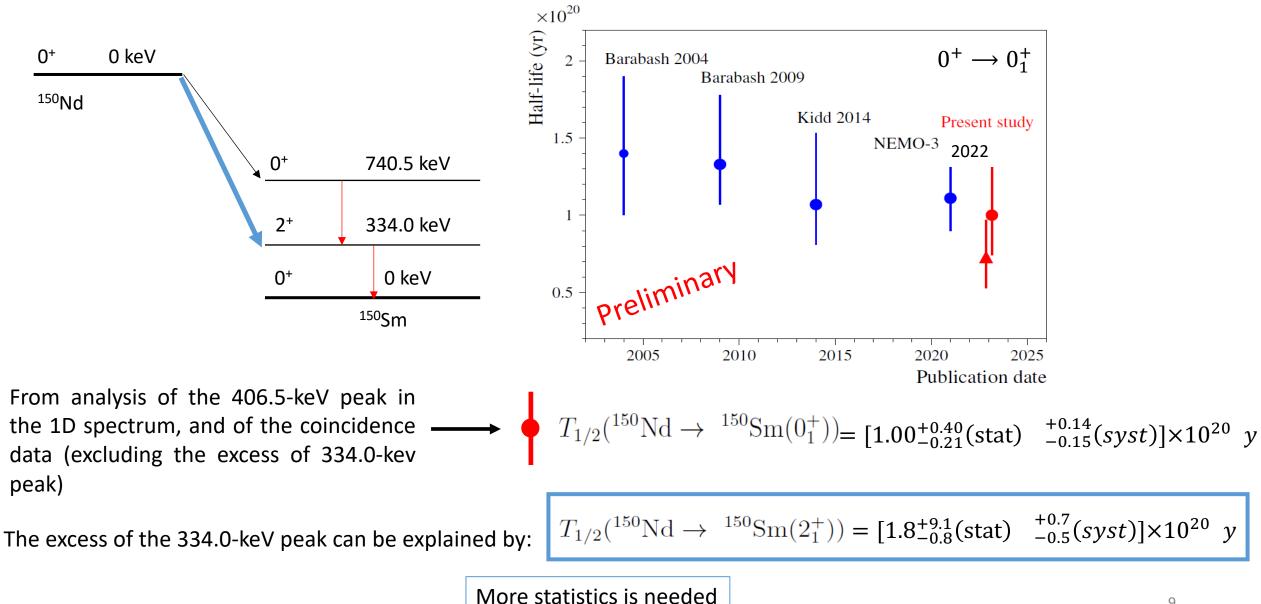
V

### **Coincidence spectrum in 2 HPGe Detectors** (5.845 y)




Two  $\gamma$  quanta, 334.0 keV and 406.5 keV, emitted in de-excitation of the 740.5-keV 0<sup>+</sup><sub>1</sub> level of <sup>150</sup>Sm, can be detected in coincidence by the HPGe counters of the detector system.

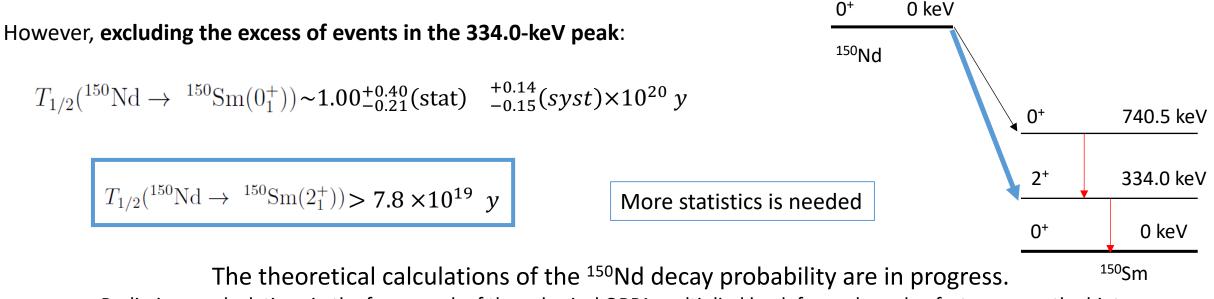
 $T^{334\&406}_{1/2}$  (<sup>150</sup>Nd  $\rightarrow$  <sup>150</sup>Sm(0<sup>+</sup><sub>1</sub>)) = [0.98<sup>+0.69</sup>\_{-0.36}(stat)]×10<sup>20</sup> y.


 $\varepsilon^{334\&406} = 0.0004262(23)$ 

#### Half-life of <sup>150</sup>Nd relative to the $2\nu 2\beta$ decay to the 0<sup>+</sup><sub>1</sub> excited level of <sup>150</sup>Sm



obtained by analysis of the 334.0-keV and 406.5-keV peaks in the 1D spectrum, and of the coincidence data.


#### Indication of $2\nu 2\beta$ decay of <sup>150</sup>Nd to the 2<sup>+</sup><sub>1</sub> excited level of <sup>150</sup>Sm



### Conclusions

- Double-β transitions of <sup>150</sup>Nd to excited levels of <sup>150</sup>Sm were studied with the help of low-background HPGe γ spectrometry at the Gran Sasso underground laboratory of the INFN (Italy).
- A highly purified neodymium-containing sample with a mass of 2.381 kg was measured over 5.845 y by a four-crystal HPGe detector system, that allowed to detect γ quanta with energies 334.0 keV and 406.5 keV, emitted in the 2v2β decay of <sup>150</sup>Nd to the 740.5 keV 0<sup>+</sup><sub>1</sub> excited level of <sup>150</sup>Sm both in the 1D energy spectrum and in coincidence. By analysis of the 334.0-keV and 406.5-keV peaks, and of the coincidences between the γ quanta, the half-life of <sup>150</sup>Nd was calculated as:

$$\operatorname{preliminary}_{1/2}({}^{150}\mathrm{Nd} \to {}^{150}\mathrm{Sm}(0^+_1)) = [0.73^{+0.18}_{-0.11}(\mathrm{stat}){}^{+0.16}_{-0.17}(\mathrm{syst})] \times 10^{20} \mathrm{y}$$



Preliminary calculations in the framework of the spherical QRPA multiplied by deformed overlap factors agree the hint 10

# **BACKUP SLIDES**

#### Half-life of <sup>150</sup>Nd relative to the $2\nu 2\beta$ decay to the 0<sup>+</sup><sub>1</sub> excited level of <sup>150</sup>Sm

| Source of systematic uncertainty                        | Relative uncertainty       |
|---------------------------------------------------------|----------------------------|
|                                                         | $(\% \text{ of } T_{1/2})$ |
| Number of <sup>150</sup> Nd nuclei                      | $\pm 1.7$                  |
| Detection efficiency in 1-dimensional data              | $\pm 3.2$                  |
| Interval of fit for 334.0-keV peak                      | +1.0 -1.4                  |
| Bin of spectrum for 334.0-keV peak fit                  | +10.6<br>-7.2              |
| Energy scale for 334.0-keV peak fit                     | +0.8                       |
| Model of background for 334.0-keV peak fit              | -0.8                       |
| Interval of fit for 406.5-keV peak                      | +3.7 -5.1                  |
| Bin of spectrum for 406.5-keV peak fit                  | -12.0                      |
| Energy scale for 406.5-keV peak fit                     | -2.5                       |
| Model of background for 406.5-keV peak fit              | +5.7 -4.2                  |
| Monte Carlo statistics for CC detection efficiency      | $\pm 0.5$                  |
| Energy interval of events selection to build CC spectra | +11.9<br>-2.8<br>+1.1      |
| Energy interval of background estimation in CC data     | $^{+1.1}_{-4.3}$           |

Sources of systematic uncertainties of the half-life of  $^{150}Nd$  relative to the 2v2 $\beta$  decay to the 740.5 keV 0+ $_1$  excited level of  $^{150}Sm$  calculated by using the 334.0-keV, 406.5-keV peaks in the 1D spectrum, and the CC data. The uncertainties are assumed to be independent and added in quadrature.

Half-life of <sup>150</sup>Nd relative to the  $2\nu 2\beta$  decay to the first 0<sup>+</sup><sub>1</sub> excited level of <sup>150</sup>Sm obtained by analysis of the **1D spectrum**, **coincidence data**, and **their combinations**. "M = 1" denotes the results obtained from the analysis of the 1-dimensional spectrum built under the condition "multiplicity = 1".

| Number   | Method of analysis                              | Half-life, $10^{20}$ yr                                           |
|----------|-------------------------------------------------|-------------------------------------------------------------------|
| in order |                                                 |                                                                   |
| 1        | 1-Dimensional spectrum, 334.0 keV peak          | $0.60^{+0.18}_{-0.11}(\text{stat})^{+0.07}_{-0.05}(\text{syst})$  |
| 1a       | 1-Dimensional spectrum, 334.0 keV peak, $M = 1$ | $0.63^{+0.20}_{-0.12}(\text{stat})^{+0.08}_{-0.06}(\text{syst})$  |
| 2        | 1-Dimensional spectrum, 406.5 keV peak          | $1.03^{+0.47}_{-0.24}(\text{stat})^{+0.08}_{-0.15}(\text{syst})$  |
| 2a       | 1-Dimensional spectrum, 406.5 keV peak, $M = 1$ | $1.02^{+0.49}_{-0.25}(\text{stat})^{+0.08}_{-0.15}(\text{syst})$  |
| 3        | Combination of 1 and 2                          | $0.61^{+0.14}_{-0.09}(\text{stat})^{+0.11}_{-0.16}(\text{syst})$  |
| 4        | Coincidence data (comparison of the events      |                                                                   |
|          | observed with known mean background)            | $0.98^{+0.69}_{-0.36}(\text{stat})^{+0.12}_{-0.05}(\text{syst})$  |
| 5        | Combination of 1a, 2a and 4 (see footnote 4)    | $0.73^{+0.18}_{-0.11}(\text{stat})^{+0.16}_{-0.17}(\text{syst})$  |
| 6        | Combination of 2a and 4 (see footnote 4)        | $1.00^{+0.40}_{-0.21}(\text{stat})^{+0.14}_{2-0.15}(\text{syst})$ |